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References W

* |t is impossible to cover everything in 3 hours. -

- Many materials can be found online:

* Wiki: https://cp3.irmp.ucl.ac.be/projects/madgraph/
* MadGraph schools

» Hefei 2018: https://indico.ihep.ac.cn/event/7822/
* Chennai 2019: https://indico.cern.ch/event/829653/

* Launchpad (Q&A) : https://launchpad.net/mg5amcnlo

- aMC@NLO web page : https://amcatnlo.web.cern.ch/ (references)

» Or simply google it or ask questions to ChatGPT/DeepSeek etc

* The best way to understand it is by playing it — like
playing games in your spare time.
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A Brief Historical Overview Sk
Time | | | \ 8
HELAS: HELicity Amplitude Subroutines @
for Feynman Diagram Evaluations

H. MURAYAMA, 1. WATANABE and K. HAGIWARA

1991
19992 HELAS
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A Brief Historical Overview

Time
1991 HELAS University of Wisconsin - Madison MAD/PH/813
1992 January 1994
1994
MadGraph , :
1995 Automatic Generation of Tree Level
Helicity Amplitudes
T. Stelzer

Physics Department, University of Durham
Durham DHI1 3LE, England

and

W. F. Long

Physics Department, University of Wisconsin-Madison
Madison, WI 53706, USA
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A Brief Historical Overview

Time
1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande
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A Brief Historical Overview

Time
1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande

vadEvent MadEvent: automatic event generation with
MadGraph*

2002
2003

Fabio Maltoni and Tim Stelzer

Department of Physics, University of Illinois at Urbana-Champaign
1110 West Green Street, Urbana, IL 61801, USA
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A Brief Historical Overview

Time
1991
1992 HELAS
1994
1995 MadGraph
Top quark discovery at Fermilab
Neutrino oscillation at Super-Kamiokande
2002
5003 MadEvent
2007
5008 MadGraph/MadEvent v4

MadGraph/MadEvent v4: the new web generation

Johan Alwall,* Pavel Demin,’ Simon de Visscher,? Rikkert Frederix,” Michel Herquet,®
Fabio Maltoni,’ Tilman Plehn,® David L. Rainwater? and Tim Stelzer®

SDU SUMMER SCHOOL HUA-SHENG SHAO
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Time
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1995 MadGraph
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Neutrino oscillation at Super-Kamiokande

2002
2003 MadEvent

2007

2008 MadGraph/MadEvent v4

LHC operated at CERN
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A Brief Historical Overview

Time
1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande

2002
2003 MadEvent
2007
2008 MadGraph/MadEvent v4
LHC operated at CERN
2011
2012 MadGraph 5 MadGraph 5: going beyond

Johan Alwall,® Michel Herquet,®” Fabio Maltoni,® Olivier Mattelaer® and Tim Stelzer®
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A Brief Historical Overview

Time
1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande

2002

2003 MadEvent

2007

2008 MadGraph/MadEvent v4
LHC operated at CERN

2011

2012 MadGraph 5

—~

Higgs discovery at the LHC
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A Brief Historical Overview

Time

1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande
2002
5003 MadEvent
2007
5008 MadGraph/MadEvent v4

LHG operated at GERN The automated computation of tree-level and
2011 M next-to-leading order differential cross sections, and
2012 adGraph 5 . . . .
“—~ their matching to parton shower simulations

5014 Higgs discovery at the LHC
5015 MadGraph5_aMC@NLO . awall,® R. Frederix,’ S. Frixione,’ V. Hirschi,c F. Maltoni,? O. Mattelaer,

(aka MadGraph5 v2) H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro""
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A Brief Historical Overview

Time

1991
1992 HELAS
1994
1995 MadGraph

Top quark discovery at Fermilab

Neutrino oscillation at Super-Kamiokande
2002
5003 MadEvent
2007
5008 MadGraph/MadEvent v4
5011 -G operated at GERN The automation of next-to-leading order electroweak
2012 MadGraph 5 .

calculations
5014 é\ Higgs discovery at the LHC
5015 MadGraph5_aMC@NLO
(aka MadGraph5 v2) R. Frederix,® S. Frixione,® V. Hirschi, D. Pagani,® H.-S. Shao? and M. Zaro®

3818 MadGraph5_aMC@NLO NLO EW automation

(aka MadGraph5 v3)
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What it can bring to me ?

* A single framework to provide the following types of
computations

fLO: fixed-order LO (= tree level and/or loop-induced)

fNLO: fixed-order NLO

LO+PS: hard LO events and parton shower (external PSMC)

NLO+PS: hard NLO events and parton shower (MC@NLO+external PSMC)
* LO merged: merging of LO multijet samples (MLM/CKKW-L)

* NLO merged: merging of NLO multijet samples (FXFxX/UNLOPS)

» A fully automated chain from the (B)SM Lagrangian to events is:

UFO LHE
LO FeynRules —>» MG5_aMC=—» PSMC

UFO LHE
NLO FeynRules(+NLOCT) =—=» MG5_aMC =—3» PSMC
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What it can bring to me ?

A framework with many useful tools for phenomenology studies
« MadWidth: width and branching ratio computations
« MadWeight: a phase-space generator for matrix-element method
« MadSpin: spin-entangled decay
« MadDM: dark-matter observable computations in (in)direct searches
« MadSTR: simplified treatments of resonances at NLO
« MadDump: event generation for beam dump experiments
- e+e- at NLO: (N)LO calculations for et+e- with ISR and beamstrahlung
« UPC at NLO: (N)LO calculations for gamma-gamma collisions in UPC
- aMCfast/PineAPPL: fast-interpolation grids of cross sections for PDF fits
- MadNIS: Neural multiple-channeling importance sampling
 Reweighting/Systematics/Bias

 MadAnalysis5: event analysis and reinterpretation of collider searches
* A matrix-element provider

- e.g. Pythia8 and MatchBox in Herwig7
- Also your own format with the PLUGIN mode
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PLAN

* Lecture 1:

 LO event simulations

* Lecture 2:

 NLO calculations and event simulations at NLO QCD
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LECTURE 1

LO EVENT SIMULATIONS
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LECTURE 1

LO EVENT SIMULATIONS

Introduction
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Hard interaction
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Hard interaction

Parton shower
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Hard interaction Multi-parton interaction

Parton shower
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A Typical LHC Event : Monte Carlo Point of View

Hard interaction Multi-parton interaction

Parton shower Beam remnant
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Hard interaction Multi-parton interaction Chromo-electric transition

Parton shower Beam remnant
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A Typical LHC Event : Monte Carlo Point of View

proton

Hard interaction Multi-parton interaction Chromo-electric transition

Parton shower  Beam remnant Colour (re)connection
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Hard interaction Multi-parton interaction Chromo-electric transition Hadronisation

Parton shower  Beam remnant Colour (re)connection
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Hard interaction Multi-parton interaction Chromo-electric transition Hadronisation

Parton shower  Beam remnant Colour (re)connection Decay
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A Typical LHC Event : Monte Carlo Point of View

l »
—

Hard interaction Multi-parton interaction Chromo-electric transition Hadronisation

Parton shower Colour (re)connection Decay
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COUXRAD

How To Improve Theoretical Predictions ? e

Q\A{C N\’O
Hard interaction =

& = &, {H%Al + (;‘_;)ZA2+(§‘—;)3A3+...]

HUA-SHENG SHAO
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How To Improve Theoretical Predictions ? & 2%

Q\A{C N\’O
Hard interaction =

Parton shower

. Formally leading log and leading colour accuracy
- Beyond depends on some details (evolution variables, recoil schemes, ..)

. Active theoretical developments (NLO kernels, NLL, NLC,...)
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How To Improve Theoretical Predictions ? D

‘?\A{C N\’O
Hard interaction =

Parton shower

Pure perturbative
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How To Improve Theoretical Predictions 7

——

Hard interaction =

Parton shower

Pure perturbative

Multi-parton interaction Mostly non-perturbative

Comments:
Chromo-electric transition - Tough'!
Colour (re)connection - Most are model dependent

. Tuning to data

Hadronisation

.- Very flexible
Decay

- Needs the efforts of experimentalists

SDU SUMMER SCHOOL
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How To Improve Theoretical Predictions 7

— More rigorous
Hard interaction = Ag
Parton shower
Pure perturbative
Multi-parton interaction Mostly non-perturbative

Chromo-electric transition

Colour (re)connection

Hadronisation

Decay Less rigorous
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How To Improve Theoretical Predictions 7

— Less details

—_—

Hard interaction =

Parton shower

Pure perturbative

Multi-parton interaction Mostly non-perturbative

Chromo-electric transition

Colour (re)connection

Hadronisation

\4

Decay More details
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How To Improve Theoretical Predictions ? e

\
Q]\I{b N\*‘O

. Common Principle:
+ Adopt the advantages of different aspects

Hard interaction Parton shower

Hard and Resolved Soft and/or Collinear

+ Balance the accuracy over the steps in the simulation chain

+ Improve not only the single steps but also their merging

« TWO main directions:
+ Matching

- Avoid double counting between NkLO (k>0) MEs and PSs
+ Merging
= Include more real radiation MEs (formally higher order, improve kin.)

= Subtract double counting of real radiation from MEs and PSs
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The LHC master formula e

\

o The initial condition of the MC simulation g

2 4 . [Short-distance cross section &
7714\?‘ A/?/(predicted in perturbation theory)

Parton distribution functions
(from experiments)

o(P1Py = h+X) = /dﬂfldwzfépl)(wl,M%)féPQ)@Q,M%)&

Matrix element: n! diags

28 Phase space: (3n-4) dims
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LECTURE 1

LO EVENT SIMULATIONS

Matrix element
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Helicity Amplitudes

ChatGPT v

Can you write a code to calculate the cross section of $e”+e”-\to
e"+en-$?

V' Python Code (Symbolic Bhabha scattering using SymPy)

python @ Copy © Edit

sympy Sp

# Constants and symbols
alpha, s, t, u, m = sp.symbols( , real= , positive=
|F -

# Define the differential cross section (tree-level QED, unpolarized)

# Taken from standard QED textbooks (e.g. Peskin & Schroeder, Halzen
dsigma_dt = (2 % sp.pi % alphaxx? / skxx2) *x (

(skk2 + wkx’) / tkk? +

(tkk2 + uxk’) / skk2 +

x uxx? / (s x t)

# Display the symbolic result

sp.pprint(dsigma_dt, use_unicode=

SDU SUMMER SCHOOL 14
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Helicity Amplitudes

\_

(The general idea:

+ Evaluate M,, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared

- Loop over helicities, diagrams, and color configurations

\ ‘\
\\

J
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Helicity Amplitudes

(The general idea:

+ Evaluate M,, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared

- Loop over helicities, diagrams, and color configurations

\ ‘\
\\

J

\_

~

_/
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Helicity Amplitudes

\_

(The general idea:

+ Evaluate M, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared
- Loop over helicities, diagrams, and color configurations

~

J

(

\_

n = U4 V3 U1

Matrices for given helicity and momenta of external le

-

~

U9

gs

_/
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Helicity Amplitudes ‘
(The general idea: A

+ Evaluate M, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared

K - Loop over helicities, diagrams, and color configurations /

(B : )

9

Mn — ﬂ4 efylu U3 (p1 +p2)? —M;*L?L +iLym, @1 U9

Matrices for given helicity and momenta of external legs

Calculations of propagators & vertices

e+ e+

\_ _/
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Helicity Amplitudes

(The general idea: A

+ Evaluate M, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared

- Loop over helicities, diagrams, and color configurations /

\_

4 )

— Guv — U
Mn = U4 6V“ U3 (p1 +p2)2 — m2 +ilm, U1€’Y (9%,

Matrices for given helicity and momenta of external legs

Calculations of propagators & vertices

_/
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Helicity Amplitudes

(The general idea:
+ Evaluate M, for a given helicity of external particles

- Multiply with its complex conjugate to get amplitude squared

- Loop over helicities, diagrams, and color configurations

\ \

J

\_

Juv

M,n p— ﬂ46fy’u[03 (p1 +p2)? — m2 +ilymy Ul

Calculations of propagators & vertices

: v1 = fet(pr, m1)

Uo = fCt(pQ,mg)

V3 — fCt(pg,mg)

I_L4 — fCt(p )

fct (v, ug,ma,F )
fCt( U4, )

Matrices for given helicity and momenta of external legs

~

U9

_/
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Helicity Amplitudes

M
diagrams

Analytic M2

Helicity M

Recycling M

Recursion log(M)

N particles

(NI})2

(ND2N

(N-1)!
) (N-1)

IND(N-1)

Ex: 2->6

1.6 - 10°

1.0-107

6.5 - 10°

3.3-.10%

SDU SUMMER SCHOOL
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Helicity Amplitudes D
‘?\% N
- . N
. N particles| Ex:2->6 .
diagrams ‘
Analytic M2 (N2 1.6 - 10” | @
Helicity M (ND2N 1.0 - 107 |
. (N— | )' 5 ! 5
Recycling M > (N-1) 6.5-10° || [ \|
Recursion log(M) NN 3.3+ 10 \ j

+ We want to compute matrix element

- for large number of final states
- for any (B)SM theory
= for loop(s)

HUA-SHENG SHAO
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LECTURE 1

LO EVENT SIMULATIONS

Phase space: event generation
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Phase Space Integration

« Challenges in numerical integration:
+ high-dimension phase space
+ Integrand is a very peaked function
+ General and flexible

+ Not only integration but also event generation

SDU SUMMER SCHOOL
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Numerical Integration

L 1 L L n L 1 L i L L 1 L
R ) VS I oY VA

N Simpson MC . Relative error:
3 0.638 0.3
1
5 0.636/ 0.8 S
20 0.63662 0.6 |
100 0.636619 0.65 + SiImpson ~i V)
1000 0.636619 0.636
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Numerical Integration

L 1 L L n L 1 L i L L 1 L
R ) VS I oY VA

N Simpson MC . Relative errorind dim:
3 0.638 0.3
1
5 0.636/ 0.8 -
20 0.63662 0.6 |
100 0636619 0.65 + Simpson (%
1000 0.636619 0.636
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Integration Variable Choices e

\

I =1In =+

I =0.637 £ 0.507

VN
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Integration Variable Choices

I =0.637 £ 0.507

VN
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Integration Variable Choices

031
7 — 06374 2307 I = 0.637 + 251

VN VN

SDU SUMMER SCHOOL HUA-SHENG SHAO



Integration Variable Choices

Integrand divergent at x=0

Variance divergent:
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Integration Variable Choices

Integrand divergent at x=0

Variance divergent:
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Importance Sampling

Question: what is your good integration variable ?

1-T/M 1+T/M
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Importance Sampling

Question: what is your good integration variable ?

1-T/M 1+T/M
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Importance Sampling

Question: what is your good integration variable ?

e

Probability of sampling
random points over g2

. : . . ‘ 1‘.0 — 115 ‘
1-T/M 1+T/M 1-T/M 1+T/M
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Importance Sampling

« MC Integration is performed according to our best

knowledge of the integrand
+ Basic cuts include in this knowledge
+ Custom cuts are ignored

Basic Cuts Custom Cuts

1-T/M 1+T/M 1-I'/M 1+T/M 1-T/M 1+T/M

SDU SUMMER SCHOOL HUA-SHENG SHAO



Importance Sampling

. Summary of key points

+ The phase-space parametrization is important for an efficient computation

+ The change of variable ensures that evaluation of integral is done where

the integrand is largest !

+ Generate random points in a distribution which is close to the function

to be integrated

Adaptative Monte Carlo integrator

Creation an approximation of the integrand on the fly
r
|

Algorithm:

Y% Create bins such that each bin
has the same contribution

Y Use the approximation for the
importance sampling method
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The VEGAS Algorithm @
VEGAS for multi-dimensional integrations
Lepage (JCP’78)
+ Use projection on the axis
p(z1,x2,...,xq) = p1(z1)p2(x2) - - - pa(Ta)
~
- We need to
ensure the
factorization !
= Additional
change of
variable
J
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O
PN

Importance Sampling s

&Y

QL
S

Oscillatory Distribution

PR N XTRYRC 110 b B TR 10

.' t“\" '. ‘31 0"“. ) z o ° °q0 o K 'ﬁf E

.. s ® o2 ‘:.’ :‘:t.’ \ !?..9."0:?‘;.?:?"}.'.. % ° oo
o, O e

1.0 x

-

....:.s
f..‘.}o

o P . j X
0.2 04
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Phase Space Integrator S

\

. An example: dijet production at the LHC a2

Main pole structure

2

s-channel M., 1 _ 1
s (p1+p2)?
t-channel u M, x 1 _ 1 .
/M t (pl - p3)
T 1 1
u-channel : M, x — = 5
u (P1 — Pa)
1/%7’%’7’%
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Single-diagram enhanced multi-channelling

. Trick: split the complexity Maltoni, Stelzer (HEP'03)

M — MS -/\/lt M’LL
1 ;1

1€{s,t,u} :

M}

+ Any single diagram is “easy” to integrate (pole structures & good integration

variables known)
+ Divide the single integration into multi channels, based on diagrams/topologies
+ All other peaks taken care of by denominator sum

+ Errorsin quadrature (no extra computational cost)

+ Each diagram is calculated only once

+ Paralle in nature
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Event Generation

. Weighted events

+ Same number of events in areas of phase space with very different probabilities

= Events must have different weights

1.0

0.8

0.6

04r-

0.2~

0.0 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 X
0.0 0.2 0.4 0.6 0.8 1.0
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Event Generation

. Weighted events

+ Same number of events in areas of phase space with very different probabilities

= Events must have different weights

1.0

0.8

0.6

04r-

0.2~

0.0 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 X
0.0 0.2 0.4 0.6 0.8 1.0

. Un-Weighted events

+ Number of events proportional to the probability of areas of phase space

= Events have the same weight (“unweighted”)
= Events distributed as in Nature
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Event Generation

. Weighted events
+ Same number of events in areas of phase space with very different probabilities

= Events must have different weights

1.0

_ Unweight procedure
(acceptance-rejection method):

/O e f (@) =

% (Generate a uniform random
number x between [0,1]

04r-

* Generate a second uniform random
number y between [0,max(f)]

0.2~

. 0 * |f y < f(x), accept x, otherwise reject
O'%.o 0.2 0.4 0.6 0.8 10" X and repeat

. Un-Weighted events

+ Number of events proportional to the probability of areas of phase space

= Events have the same weight (“unweighted”)
= Events distributed as in Nature
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Event Generation S

do Lcars
do 1
| =
MC integrator
ﬂmmﬂ T
o ] =T
O
. Accgptgnce—
Rejection
do
do 1 -
Event generator CORnEE
i
O

&  This is possible only if f(xX)<oco AND has definite sign!
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LECTURE 1

LO EVENT SIMULATIONS

Multi-jet merging techniques
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How To Improve Theoretical Predictions ? e

\
Q]\I{b N\*‘O

. Common Principle:
+ Adopt the advantages of different aspects

Hard interaction Parton shower

Hard and Resolved Soft and/or Collinear

+ Balance the accuracy over the steps in the simulation chain

+ Improve not only the single steps but also their merging

« TWO main directions:
+ Matching

- Avoid double counting between NkLO (k>0) MEs and PSs
+ Merging
= Include more real radiation MEs (formally higher order, improve kin.)

= Subtract double counting of real radiation from MEs and PSs

SDU SUMMER SCHOOL HUA-SHENG SHAO




How To Improve Theoretical Predictions ? S
3

e

. Common Principle:
+ Adopt the advantages of different aspects

Hard interaction Parton shower

Hard and Resolved Soft and/or Collinear

+ Balance the accuracy over the steps in the simulation chain

+ Improve not only the single steps but also their merging

. Two main directions:
+ Matching
- Avoid double counting between NkLO (k>0) MEs and PSs

+ Merging
= Include more real radiation MEs (formally higher order, improve kin.)

= Subtract double counting of real radiation from MEs and PSs
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&’v

A Double-Counting Issue (ST

7IN

A

3

Cani

X+0j>mm
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A Double-Counting Issue S

Parton shower i

X+Oj>vvw
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A Double-Counting Issue S

Parton shower i

X+Oj>\m >V\M
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A Double-Counting Issue S

Parton shower i

X+Oj>\m >V\M >\/\M
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A Double-Counting Issue S

Parton shower i

X+Oj>\m >V\M >\/\M

SDU SUMMER SCHOOL HUA-SHENG SHAO




A Double-Counting Issue S
QA{C N"O

Parton shower

\l
/I)

>
_|_
<

+-
C
O
-
L
LL]
Pt
S
(O
2
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A Double-Counting Issue SR

icamn

Parton shower

%zm

>
_|_
<

é/g

+-
C
O
-
L
LL]
Pt
S
(O
2
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A Double-Counting Issue SR

icamn

Parton shower

>
_|_
<

é/é/

Matrix Element
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A Double-Counting Issue SR

icamn

Parton shower

>
_|_
<

é/é/

Matrix Element

>
_I_
&
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A Double-Counting Issue SR

icamn

Parton shower

C

Q X 4+ 0y

D

L1

X

= Px+1

f / kT>cht
X +2
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A Double-Counting Issue SR

icamn

Parton shower

C

Q X 4+ 0y

D

L1

X

= Px+1

f / kT>cht
X +2
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Multi-jet Merging

. Solve double-countingissue by dividing phase space in hard and soft regions
+ Generating ME samples with different jet multiplies with Q_;

+ Q. tlIs called merging scale (arbitrary but rule-of-thumb guidance)

+ Making exclusive by reweighting with no-emission probabilities

= Also reweighing strong coupling and PDF ratios

+ Using normal parton shower in “soft region” below Q_,;

. Different multi-jet merging algorithms (will not go into details here)

+ CKKW(_L) merging scheme Catani, Krauss, Kuhn,Webber (JHEP'OI); Lonnblad (JHEP’02)

+ MILLM merging scheme Mangano (2002); Mangano, Moretti, Piccinini, Treccani (JHEP’07)

. Possible issues:
+ Merging scale dependence
+ Merging scale might not be defined in terms of shower evolution variable

+ Might break unitarity of shower
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Multi-jet Merging

® Regularization of matrix element divergence
® Correction of the parton shower for large momenta

® Smooth jet distributions

" 10°
£ Matrix element
2107
2
w .
Fea Desired curve
1
1
0 2nd QCD radiation jet in
top pair production at
107 | the LHC, using
A MadGraph + Pythia
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Try to play/run MadGraph5_aMC@NLO according to 2 tutorials

1. Basic LO runs

https://indico.ihep.ac.cn/event/7822/contributions/98094/attachments/52130/60094/Tutorial_MG5aMC_Hefei2018_Basics.pdf

2. Multi-jet merging

https://indico.ihep.ac.cn/event/7822/contributions/98061/attachments/52120/60084/Tutorial_MG5aMC_Hefei2018_Merging.pdf

MG5aMC installation instruction

https://indico.ihep.ac.cn/event/7822/page/1116-tool-installation
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LECTURE 2

NLO CALCULATIONS &
EVENT SIMULATIONS AT NLO QCD
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LECTURE 2

NLO CALCULATIONS &
EVENT SIMULATIONS AT NLO QCD

A NLO example

»— @ — ¢
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A NLO Example: Born

 Let us calculate NLO QCD of Z -> g gbar decay
« Writing down Born amplitude according to Feynman rules

For simplicity, we assume quarks are massless

ABorn = _5cqc(j€,u(pz)a( ) FILZchj (pCj)

sin 6,

V" PR
cos 0,

w) Y Pr —1eQq

« Squaring amplitude, summing over colours and spins, and e
averaging the spin of the initial state 4m

L] 2 2
2 [ Ason|” = Smam (QQ‘] <cos 9w> 20520, in2

cos? 0, sin“ 6,,

* Phase-space integration

I'Born(Z — q7) = 2, /(QW) 0" (pz — Pqg — Pg) (21)3%2 2F, 2E, Z|ABOI’H‘
,sin? 0,  Qul, N I?
Ycos26,, cos20, 2cos26,sin’0,

= amyzyz
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A NLO Example: Virtual Correction

 Let us calculate NLO QCD of Z -> g gbar decay

+ Writing down one-loop amplitude according to Feynman rules

: For simplicity, we assume quarks are massless

g

~¥2)

1 I
2 (l_—pZ)Q

(M) 2 (1 p,)

Atloop = 19", (pz)u(pg)- (—igs%quc> ‘ / <—igs’ypT&q) v(pg)

u~

3

* Need to evaluate two tensor integrals

i

B / del [+ T _ / dl M1V
L Cm) R (- py)° (I - p2)° : Cm) 2 (1—py)”* (I—pz)”

according to Lorentz structures

I} = ph' By + p, Bo 15" = g"" Boo + plpy Bi1 + pypz Bas + (P4 + pyph) Bz

Solving the coefficients B, e.g.
pg- 11 =piBi+pq-pzBa =pg-pzBa Pz 11 =pq-pzBi +py By =pg - pzB1 + myBs
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A NLO Example: Virtual Correction S

 Let us calculate NLO QCD of Z -> g gbar decay

* Need to evaluate two tensor integrals
Solving the coefficients B, e.g.

[ [ — 2B
BQZPq 1 Blsz 1 — M7y B

Pq " PZ Pq Pz

o d] Pyl
Pq Il_/(27r)d12 (l_—pq)z (Z_—pZ)Q
1/ e 2 (I—p,)
(

242 (1 py)” (1= pz)’

1 [ d¥ 1 1 [ d¥l 1
_5/(2w>d (I—pg)° ([ —pz)° _5/<2w)dz‘2 (- pz)’

2

_1/ d*l 1 _1/ d*l 1
2 ) (2m)? 2 (l‘_pq)Q 2 ) (2m)? 2 (l—_pZ)Z
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A NLO Example: Virtual Correction S

* Let us calculate NLO QCD of Z -> q gbar decay dgasd

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

/ dl 1 / ; / ddl 1

X ization !
27T o (T ~ 57 2 Feynman parameterization !
( 2 (1 pq :L'l2 +(1—2)(—pg) }

ddl
d:z: A Using on-shell condition !
(1—(1- x)pq)

ddl 1
dx Translational invariance !

B ddl 1
B / (27T)d (l_2)2 Integration over x !
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A NLO Example: Virtual Correction S

* Let us calculate NLO QCD of Z -> q gbar decay dgasd

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e. g

ddl 1 lo —>zlo +OO ST Wick rotation &
( ) [ /2 (l 27'( de spherical coordinate !
9 rd/2
(C;/;T) (27‘(‘) / d‘ l‘ |l|d_5 Integration over solid angle !

’LQT('CUQ (/1 o +oco
— dzzd—5+/ dzzd—5)
D(d/2) (27 \ /, 111} 1 111}
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A NLO Example: Virtual Correction SR

» Let us calculate NLO QCD of Z -> q qbar decay gD

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e. g

ddl 1 lo —>zlo +OO ST Wick rotation &
( ) [ /2 (l 27'( dﬂd spherical coordinate !
9 rd/2
(C;/;T) (27‘(‘) / d‘ l‘ |l|d_5 Integration over solid angle !

i27d/? ( /1 o too
_ dzzd—5+/ dzzd—5)

1| — 0 (IR): the integral is divergent when d < 4

1| — +00(UV): the integral is divergent when d > 4
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A NLO Example: Virtual Correction SR

» Let us calculate NLO QCD of Z -> q qbar decay gD

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e. g

ddl 1 lo —>zlo +OO ST Wick rotation &
( ) [ /2 (l 27'( dﬂd spherical coordinate !
9 rd/2
(C;/;T) (27‘(‘) / d‘ l‘ |l|d_5 Integration over solid angle !

i27d/? ( /1 o too
_ dzzd—5+/ dzzd—5)

1| — 0 (IR): the integral is divergent when d < 4

1| — +00(UV): the integral is divergent when d > 4

Regularisations: d—=4— 9 €IR . €E[R — 0)—
)
d=4— 2€UV7€UV — 0+
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A NLO Example: Virtual Correction S

* Let us calculate NLO QCD of Z -> g gbar decay gD

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

/ddz 1 2?2 ( 1 1)

Crdz(-p,)° T(d/2)2m)4 \ 2ar = 2euv

« Squaring with Born amplitude, summing over colours and spins,
and averaging the spin of the initial state

~— o 1 1 m2
2R 00 r — orn2 - - 1—1 2
> 2R Ao Aborn} = g (Sdmanl?) 2 [ 22— 5 L (110 17 )

MR
9? 9 2 2
—— | 5 — —1 |
i S (- o gty gt )|

« The UV divergence needs renormalisation

- o o\ s 2 2
22%{AUVABOTH} o 1 . 6 (Z‘ABOHI’ ) [ i SEIR]

3euv
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A NLO Example: Virtual Correction @
N
 Let us calculate NLO QCD of Z -> g gbar decay

* Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

/ddz 1 2?2 ( 1 1)

Cmdz(1-p,)° T(d/2)2m)e \ 26ar  2euv

« Squaring with Born amplitude, summing over colours and spins,
and averaging the spin of the initial state

o 4 4 m2
28R 00 ¥ — Born 2) &= o - 11 >
2_2RiA pAzBom} 1 —¢) (Z‘A ‘ ) [\6& 3l € ( > 47T2N%%>

_ 9 9 2 2
i 3 (5‘” ~ log .75 + log’ mz)]

« The UV divergence needs renormalisation

_ o 2\ s [ \2 2
22%{AUVABOI"H} _ 1 . 6 (Z‘A orn’ ) [ _I_ SEIR]

* The virtual matrix elementis:

V ZQ%{A:UOOPABOI'H} T ZQ%{AUVABOTH}
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A NLO Example: Real Emission S
o

- Let us calculate NLO QCD of Z -> g qbar decay .

« Writing down real amplitude according to Feynman rules

« Squaring amplitude, summing over colours and spins, and
averaging the spin of the initial state

~— ~— Sm(d — 2
Z|Areal‘2 — (Z‘ABornP) 0453 g )
m'7524534

X [(d — 2)534 + 2(d — 4)s94834 + (d — 2)334 — 4m2Z(824 + S34) + 4m%}

S20 = (Dg + Pg)?, 834 = (pg + py)°
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A NLO Example: Real Emission S

* Let us calculate NLO QCD of Z -> q gbar decay dgasd
« 3-body phase-space integration

1 d g 1 dd 1 dd 1 dd 1p
Freab — 5 2 0 — — Mg — . rea ’

S34 S24
y= s l-y—2z=—

mz my
d®? (pz — pg.pg) = (2m)46%(pz — Py —

2¢€
_ (4m) 1 40,
8(2#) Z

1 dd 1 dd 1
Pa) G yata) 2Eq 2Eg

(3) g ed 1 dd’ 1 dd 1 dd 1
d®' (pz — pg,Pq,Pg) = (2m)“0%(pz — Pg — Pg — Dyg) —
R (47 Lo P9 (2)3(d—1) 2E 2E(j zEg

_ 2 \1—2¢ 10
32(2m)*T(1 - ¢) (mz) :

1
/ dyy (1 —z—y)™

X
— &) 0 _ (47T)6 2\1—e€
BT (P2 = PaPg) X Jap — g M2)
X / dzz_G/ dyy (1 —z—y)~
() ()
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A NLO Example: Real Emission SR

» Let us calculate NLO QCD of Z -> q qbar decay gD

» 3-body phase-space integration

> Areal]? = (EIABMP) a2 (- 2)(1 - 2)2 4 4y — dy(1 - 2) + 42

3m%y(l—z—y)

The integration over y is divergent when d < 4 (e > 0)

4 ™
y—1—2=z (824 — O) on shell

) Pg — 0 (2 —0) soft singularity

(2) ngpq collinear singularity
- > Y,
~ ; N

y — 0 (s34 — 0)
1 pg — 0 (2—0)  softsingularity 4
(2) ngpq collinear singularity
on shell

g .
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A NLO Example: Real Emission S
—
- Let us calculate NLO QCD of Z -> q gbar decay e
+ 3-body phase- space integration
I'real = /dq)(?)) Pz — Pq>Pg> Py Z‘Areal‘Q
1
o) orn |’
2, Z_?Z %pqapq (Z|AB ‘ )
(47r) as 4 I 2 1~ 2log m7
F( — 3€IR J€IR S 4n2 15
M7 ox2i13)
21 21
( 5 47‘(‘ ,uR ©5 Am? s, T >
* Sum real and virtual
1 2
FVirtua,l — 2mZ /d(I)( )(pZ %pCbp(?)V
1 — (4m)¢ «
- - — (2) _ 2 S
FVlrtual + Freal 2mZ /dq) (pZ — pqqu) (Z‘ABOIH| >F(1 - 6) T
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A NLO Example: NLO SR

* Let us calculate NLO QCD of Z -> q qbar decay U

« Sum real and virtual

All remaining IR poles cancel (in general KLN theorem)
Kinoshita  Lee Nauenberg

We finally get a well-known result !
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e
Filling all the gaps
that | did not show |

In general, NLO calculations are
complex (and tedious, error-prone).

Let us work with the aid of a computer
and MadGraph5_aMC@NLO.




NLO Anatomy @
N@

» Three parts need to be computed in a NLO calculation™

ONLO = /dé[D(”)B /dCI)(”)V /dCI)(”“)R

b+1 b+1
O(ery) O(a; ") O(a; ™)
Born Virtual Real
cross section  correction  correction
( ) e ~N )
! \SJ \ { . \vé)
Finite Divergent Divergent

MadEvent MadLoop MadFKS
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LECTURE 2

NLO CALCULATIONS &
EVENT SIMULATIONS AT NLO QCD
Virtual=Loop+UV
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One-Loop Diagram Generation

® No external tool for loop diagram generation:
Reuse MG5 aMC efficient tree level diagram generation!

® Cllf lOOPS have two exira external particles

Trees (efee = uu~uu~) = Loops (ete- = uu~)
1 4
\ 1\ 5
\ - ’
A WU o \L /‘&/
= AVAV
o
{ € 4 y &
2 -6
graph | \. 6
1 . /_3
\-J\_ .‘i:-/v‘r»._.\u. P . 6 / é
/ -k = WAL K
5 0 i :
: N
/9 e -— 4 /‘ - -4
2 / \
graoh 3 \ 5

HUA-SHENG SHAO
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e Consider this m-point loop diagram

w1tll /1 exrernal momenta

/ de¢ N ()
(277,)([ D()DID‘ZDB'"Dm—‘ZDm—l

with D; = (/ + 1)1.)2 — 'n‘l;?

We will denote by C this integral.
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One-Loop Integral Evaluation

1
- ) o d
(1-1oop = Z | diviiiniaBOXigivigia ~ BOXigiyigis = [ d [D ;. Di.Ds.
10<11<12<13 1
! : - — d
+_ Z ('I'Ul'l?lzTrla'nglc'ioiliz Tllan 192021L2 B 1 [D D D
lo<11<12 1
- d
1 Z bi,i, Bubble;,;, Bubble;,;, = [ d [D'ioD’il
10<11 1
d
+Z i, Tadpole; Tadpole;, = [ d“l —Dio
+R + O(e)

The a, b, ¢, d and R coefficients depend onl&\' on external parameters
and momenta.

Reduction of the loop fo these scalar coefﬁcients can be achieved using
either Tensor Integral Reduction or Reducrion at the inregrand le\'el
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Tensor Integral Reduction

e Passarino-Veltman reduction:

/ d?l ad0 > Z coefl; / d?] !
. D()D1D2 c e D'm—l 'z', . DODl C .

* Reduce a general integral to “scalar integrals” by

"Complering the square'

* Example:
Application of PV to this triangle rank-1 integral

q [

]_) _+_ q / ([n‘[ [l_t
(2m)™ (12 = m)((L +p)* — m3)((L + q)2 — m3)

N

o Implemented in codes such as:

COLLIER [A. Denner, S .Dittmaier, L. Hofer, 1604.06/792]
GOLEM9S [T. Binoth, J.Guillet, G. Heinrich, E.Pilon, T.Reither, 0810.0992]
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Tensor Integral Reduction

d™l [H
/(27‘)” (12 = m3)((l +p)? — m3)((l + q)® — m3)

* The only independent four vectors are p# and g« . Therefore, the integral
must be proportional to those. We can set-up a system of linear equations

and try fo solve for ('.’1 and (o

/ dnl [H _ ( p# q# ) ( C' )
(2m)™ (12 = m2)((l + p)?2 — m3)((l + q)? — m3) o Co

We can solve for C| and Cs by contracting with p and ¢

<R1>:([2,.])]):@(01):(%.], ) (e)
Ry 2 - q] Cy ) \2p-q 29-¢q Cy
here [21- 2l-p
where ]) f (27r ) Z(1+p)2 (1+9)2 (For smlpllClr\ the masses are nedlected here)

* By expressing 2/.p and 2/.g as a sum of denominators we can express R and
R> as a sum of simpler integrals, ¢.g.

R _/ d"l 2L - p —/ d"l (1+p)* — 17 —p?
F @orRA+p2U+a? ) @ P +pR(+ 92

[ d 1 A"l 1 o [ d 1
_/ (2m)™ 12(l+q)2_/ @m) ((+p2(l+q? 7 / (2m)™ 2(1 + p)2(l + q)?
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Tensor Integral Reduction
e And similarly for Rs

/ d"l 9 . q d™l (l +q)2 L 1‘2 . q2
RQ —_ (

2m)" 2L +p)*(l+q)* ) @2m)" (1 +p)*(1+q)?

B / 1 / dnl 1 ) / drl 1
“J et p? ) o 20?0 PU )2+ )2
* Now we can solve the equation
(= )=(@i)=c(a)=(ar ai)(e)
R> 2 - q] Co ) \2p-q 2q-q Co
by inverting the “Gram” matrix ¢
Cir\ _ A Ia
@ Ro

¢ We have re-expressed, reduced, our original
integral

/ dn[ [/_L ( )IJ p ) (‘]_
‘ . —— = (" ¢
(2m)™ (12 — m3)((1 + p)2 — m3)((l + q)% — m3) v C2

in terms of known, simpler scalar integrals
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Integrand Reduction

)
Ossola, Papadopulos, Pittau (NPB’06) ‘

TIR

- The decomposition to the
basis scalar integrals
works at the level of the

integrals

1-loo

C %P = E Aigiyigis BOXigiyigis
10<t1<t2<13
+ E Cigiyi, Lriangle; ; .
10<11 <12
4 E b;.i, Bubble;,,
10<11

= Z a;, Tadpole;

10

+R 4+ O(e)

SDU SUMMER SCHOOL

Knowing a relation directly at
the integrand level, we would
be able to manipulate the
reduction without doing the

the Iinteqgrals

N(l) = Z (digiyiis + (Zioil'iz'is) H D;

10,21,22,13

T Z ((?io‘il'iz +g'i()‘i-1i2) H Di

10,21,12 1510,21 .22

+ ) (bigi, +bigi,) | Di

10.71 1710 ,11

Y+ T 2

10 1710

+P() ][] D:i + O(¢)
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Integrand Reduction

TIR

- The decomposition to the
basis scalar integrals
works at the level of the

integrals

1-loo

C %P = E Aigiyigis BOXigiyigis
10<t1<t2<13
+ E Cigiyi, Lriangle; ; .
10<11 <12
4 E b;.i, Bubble;,,
10<11

= Z a;, Tadpole;

10

+R 4+ O(e)

SDU SUMMER SCHOOL

)
Ossola, Papadopulos, Pittau (NPB’06) ‘

Knowing a relation directly at
the integrand level, we would
be able to manipulate the
reduction without doing the
the intearals

N(l) = Z (digiyinis + digiyigia) H D;

10,21,22,13

T Z (Cigiria 1 Cigiyia) H D;

10,21,12 1510,21 .22

+ D (bigiy +bigiy) ] D

10.71 1710 ,11

- o ) TT 2

20 1#10

+P() ][] D:i + O(¢)

Spurious term
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Integrand Reduction

® The functional form of the spurious terms is known (it depends on the
rank of the integral and the number of propagators in the loop) [del

Aguila, Pittau 2004]

® for example, a box coefficient from a rank | numerator is

~

3 LV po ]
dfio'il'iz'i-s(l) d10212223 el llplp‘)])S

(remember that p; Is the sum of the momentum that has entered the
loop so far, so we always have po = 0)

® The integral is zero

[d[ (22021?223([) ] ldl el [“pll/pgpg — ()
— Wigiyigiz | A1 =
DoD1 Dy D5 DoD{Dy D5
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Integrand Reduction

» Take Box (4-point) coefficients as an example

m —

N(I7) = dp123 + (io1:23([ H D;(I~)
17#0,1,2.3

e Two values are enough given the functional form for the

spurious term. We can illllllediately determine the Box

coefficient

| N(I+) N(I-)
¢ m—1 m—1 _

- _H'i;éO,l,Q,B D; (™) H 20123 Di(l7)

* By choosing other values for /, that set other combinations of

d0123 —

4 “denominators”’ to zero, we can get all the Box coefficients
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Integrand Reduction

* I[n general:

N m—1 ., ; ) e . To solve the OPP reduction,
(4) - Z | [ ioivizia + digiinial )] o H ' choosing special values for the
10 <21 <22<13 2#20,21,22,23

loop momentum helps a lot

For example, choosing | such that
Do(I7) = Dy (IF) =
= Dy(IF) = D3(I*) =0

sets all the terms in this equation
to zero except the first line

There are two (complex)
solutions to this equation due to
the quadratic nature of the
propagators
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Integrand Reduction

* I[n general:

m—1

m—1 b
NOH D [dioi1i2i3 + digiyigig (l)] Il D

10<11<12<13 17#10,11,12,13

m—1

T
M Z [Cioili? M 5i°i1i2(l)] H D Now we choose | such that

1p<11 <19 1510,21.12

Do(I') = Dy(l') = Dy(l') = 0

sets all the terms in this equation
to zero except the first and

second line

=\

C:) Coefficient computed in a previous step
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Integrand Reduction

* I[n general:

r R
m—1 _ m—1

N(l) = Z [dioilizia + d‘ioiliQig (l)] H Dg

10<11<12<13 1#10,11,12,13

\ /

/~T—1 TT—1 ~\

- Z [cioiliz + é‘ioiliz (l)] H D;
i <i itio i1 .
N Tl J Now, choosing [ such that

Do(ll) — Dl(ll) =

sets all the terms in this equation
to zero except the first, second

and third line

C) Coefficient computed in a previous step

HUA-SHENG SHAO
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Integrand Reduction

* I[n general:

a m—1 m—1 R
WOE Y [dioi1i2i3 + digirinia (l)] II D
go<i1<i2<i3 1710,21,12,13
ﬁn—i TT—1
+ Z [cioilig + é‘ioilig (l)] H Dz
10<11 <19 710,11 .2 .
> — L Now, choosing | such that
J Dy (I') =0

sets the last line to zero

C) Coefficient computed in a previous step

62 HUA-SHENG SHAO
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Integrand Reduction

* I[n general:

e N
m—1 _ m—1
MOE DY [dz'oz'lz'gz'a + digiyigis (l)] Il D
C’o<i1<i2<i3 1710,11,12,13
(—m—i TIT—1
-+ z I:cioilig + éioil‘ig (l)] H Dz
1p<11 <12 17#10,11,1 .
> — L Now, choosing | such that
\20 <11 17#10,11 ) 1 ( ) o
m—1 m—1 .
sets the last line to zero
+ 3 |a +a, 0] TT 2:
iO i#i()

=

C) Coefficient computed in a previous step
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D-dimensional Complex S

* The previous expression should in fact be written in d‘?\% S8
dimensions

/ dl N(l,¢€)
(2m)< DoD1Ds -+ D,y

D; = (Z_+Pi)2—m?a po =
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D-dimensional Complex S

* The previous expression should in fact be written in d‘?\% S8
dimensions

/ dl N (I, €)
(2m)< DoD1Ds -+ D,y
D; = (Z_+Pi)2 —my, po=0

* In numerical calculations, it is very convenient to perform
the following decomposition

[u:lu+[u 0=0,1,23--,3—2¢

d — dim / (—2¢) — dim 4d spacetime (—2¢)d space
4 — dim physical abstract

"' =0,u € (—2¢)d space " =0, u € 4d spacetime
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D-dimensional Complex S

» The previous expression should in fact be written in d*==
dimensions

/ dl N(l,¢€)
(2m)< DoD1Ds -+ D,y
D; = (Z_+Pi)2 —my, po=0

* In numerical calculations, it is very convenient to perform
the following decomposition

[u:lu+[u 0=0,1,23--,3—2¢

d — dim / (—2¢) — dim 4d spacetime (—2¢)d space
4 — dim physical abstract

"' =0,u € (—2¢)d space " =0, u € 4d spacetime
N(l,e) = N(I +Nl,l~,e
[ =N+ Nl

Suitable for numerical calc. Complement with special CT R;
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D-dimensional Complex @
» Compute the remaining loop part in terms of rational =
functions of external momentum invariants and masses

4l N(,Ie)
e—0 (27T)d D()Dl R Dm—l

RQ — lim

* For example, a gluon self-energy diagram:

N(l,e) = —2masdqpTr [7“ (F +m) v (i+ﬂg + mt)} ELEY

- After performing some Dirac algebra, we have

N(l, l €) = 8ma,0,,g" %e 2,
* Using the integration( ) = b3 :

~

d4l [2 B i , pg
/ @m)e (2 —m?) ((+pg)? —m3)  32n° (2”% - E) +0(e)
« We have Rz term

10
Ry = ——26. (me ];g) g e e,

47
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D-dimensional Complex

» It has been proven that Rz is only UV related. Therefo
like renormalisation counterterms, they can be
reexpressed into R2 Feynman rules

QCD R:2 Feynman Rules

. » P \ - ye Gme
va N e ~h ’ f Y vh e Wa 3 9% -ab |V 2 \ =~/ T
('U O AYA G, —= Vert .'(’".: ) ("1' ) Vert Gy Gy I8x? 0 o Yuv 1 A [‘t'm I ."','.."’.-g) \ -

P n N,

re,

A

) J — VNert(0): () Je -
(‘Cfl' O _— (E)I,vl \(”(‘z)n'(‘b)n-) \1 et );~()r'l;; : ' 0" ')'m \

) . » ;" ) '/';-\. T 2N, f ,
P ‘4 ) \n-lljf-""“(.“ (r':,_ | . ( l'Hl \ ) f \“,.":a'll,"l,,,"l,'
Gy 0000 @ = Vert(G, Gy, G)) | B

pJ

,ﬁ_":'.‘-,:\. e ‘,u',‘ Py P2, P3) Guo'\P2 = ™M)pt GQup\P3 — P2)u + Gou\P1 — P3 )
ps N
% Vert(Ge 0O () ) ) /l\ T \(J : I \ )
} X PN 4 vl I f ) (\l‘ l 7 | v" v.’, — (ll" 2 -(' -"'1 T/ ]l’"
PLLLLY, Vert(G4. ), Q1) po 1 o 1672 7 9N,
h \ ()' ) wi v'! Pl ol I(,-l ) ' ' \
\"l‘ (( J/‘,. ( r,,. \ ",. { ! o ) — l,\ 2 (1 | (:';111”1.-1 | ( 2 (‘.;1,"”:41 T ( 3 ("/u'(]l Pl
( 5 G '

~7Ol’ | o ( ,l l o { ‘,.,,. / I,}{ ! “ . I,/ : ) ,"\.' \ '_),\1_“. \‘ ‘ (’\ |
Y (Tr(T*TT"T*) + Tr(T*TT*T°)) (12N, + 4Ayv N. + 10N;)

(.)""r)'/l - N 13.“{ ' 1\”'}.\}“ . ("3 . ('1 /) o | ({ — ('1{/) “ o ’/l

Draggiotis, Garzelli, Papadopoulos, Pittau (JHEP’09); HSS, Zhang, Chao (JHEP’I I)
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D-dimensional Complex

* In integrand reduction, additional rational terms Rq aréw:=
nheeded !

‘ E : digiyigis + z0112'22'3) | |

l() Z1 12 23 1 20 ,21,22,13
Y ot @ 1 11 P
10,721,122 2?51() 11,19 > — e S
3 D; D; D D;
+ 3 Gigis +bigi) [T @D "
10,21 17#10,21
+ (a'io + a'io) | |‘@ . . . .
%: i2io integration of this piece

P(l) H O(z) gives rise R

« Can be included in OPP reduction

4d couterparts * Not needed in TIR reduction
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LECTURE 2

NLO CALCULATIONS &

EVENT SIMULATIONS AT NLO QCD
Real

g
u u
z
1 2
U~
3

. J
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NLO Anatomy S
N

e

* Three parts need to be computed in a NLO calculation

ONLO = /dq><”>8+/dq><“>v+/d<1><n+1>7z

Born Virtual Real
Cross section correction  correction

A B A B
Virtual = —— — — +V Rea1:—2—|———|—R

€2 € € €
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NLO Anatomy S

e

* Three parts need to be computed in a NLO calculation

ONLO = /dq><”>8+/dq><“>v+/d<1><n+1>7z

Born Virtual Real
Cross section correction  correction

Virtual = \(% g +V Real = %—I—% + R
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NLO Anatomy

* Three parts need to be computed in a NLO calculation

ONLO = /dq><”>8+/dq><“>v+/d<1><n+1>7z

Born Virtual Real
Cross section correction  correction

Virtual = \(% g +V Real = %—I—% + R

NLO
do doP (lci dg \+OO
B + +
» )L » L » 1 > L
B + R4V |—£r—§—{—‘ fd(»d)(j)leé—{—g—i—R
LO S~ e N
o NLO correction —00
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Branching: To Be or Not To Be

® [ et us consider the branching of a gluon from a quark

A . zp , - 2
. T e = 1 — 2 k2

E=(1-z)p

Where k; is the transverse momentum of the gluon k=Esin®.
It diverges in the soft (z—1) and collinear (k; —-0) region

® These singularities cancel with the virtual contribution, which
comes from the integration of the loop momentum

) p - asCr dz dk?
o, - = Opiyv = —0p .
. n nggj + ™ 1—2 Ltz

® The cancelation happens if we cannot distinguish between the
case of no branching, and of a soft or collinear branching
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Infrared Safety @
N\p

- In order to have meaningful fixed-order predictions in“
perturbation theory, observables must be IR-safe, i.e. not
sensitive to the emission of soft/collinear partons

11|I|Il 0(177277]_17]7.]+177n):0(177/&]7 7.]_17.]—'_17777’)

lim O(1,-+-,i—1,4,i+1,---,n) =01, ,i—1,i+1,---,n)

Di —0

* For example,

 The number of gluons is NOT IR safe.

« The leading prt/energy particle is NOT IR safe (soft or collinear unsafe ?).
 The colour in a given cone is NOT IR safe (soft or collinear unsafe ?).

 The transverse energy sum is IR safe.
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A Toy Example @
Lica

» Assuming the phase space integration can be casted into
a one-dimensional case = € |0, 1] :

0.6

\IR divergence

0.4

(s L

\ 4 /b\a\gl z (x1077)
1
07'¢ B

Phase-space boundary

o(x)V = (5(x)7 <2€IR | V)
V O(x) IRsafety lim O(z)R(x) = O(0)B

x—0
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A Toy Example S
o

1
O(O)V+/ dgjx_QGIRO(Qj)R Dimensionally regularise in x !
0
= X 00) (s +V +/1d ~ITFRO(z) R(x)
— - 2€IR | . T xr xT

 We have used:

x—l—QGIR _ 1 5(:13) e (l) + €r term
2€IR XL +
(%) f(z) = 1) - /) v f(x)
) T
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Phase Space Slicing

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

* Phase-space slicing

1
/ drx 1R O(x)R(x)
0
\IR divergence

0.4

0.2
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Phase Space Slicing

* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

* Phase-space slicing

1
/ dza— 129 O () R(z)
x IR divergence

(/ /)d:z;:cl 2618 0 () R z)

E 0—0 5~ 261R>
\ ~ /\ | Iaz(xl() ( 0 )2613

0.4

0.2

+) ( / 1 drx 1 O(z)R(z) + € term)

)

—O(O)B( 1R log5)

261

+ / drz ' O(z)R(z)

)

Ul

SDU SUMMER SCHOOL
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Phase Space Slicing

* In general, the phase-space integration over real matr
elementis very hard. Dedicated general approaches are
developed ! finite integral

- Phase-space slicing (can be computed numerically)

1
/ dza— 129 O () R(z)
M‘ \|R d|verg€ﬂce (/ /)da}[lj‘l 261}{(1) )R( )

0.2 5—>O ( O( ) 5 2€IR>
-1 1 2€1R

U1 - ( / drx 1 O(z)R(z) + € term)

)
1
2% _00)B ( log 5)
‘2€TR »

1
+ /5 drx 1 O(x)R(x)
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Phase Space Slicing

Q0L
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed ! finite integral

- Phase-space slicing (can be computed numerically)

1
/ dza— 129 O () R(z)
\ IR divergence

. (/ /)d:m:l 2 O(2) R(x)
0.2 | : 5—>O 2
[ D —O §2€R
o /\\Jl (x10™ 0 )QGIR )
uzI da:ac 'O(z)R(x) + er term)

120 _ (O)B( ! log5>

2€1R

0.6

0.4

/’

: T
0 Powerd terms are suppre§sed ! +/ dzz1O(z)R(x)
Large numerical cancellations ! g
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Local IR Subtraction

e

* In general, the phase-space integration over real matr
elementis very hard. Dedicated general approaches are
developed!

« Subtraction method
+ Find a generic simple function S has exactly same IR singularity as real matrix element

lim O(z)S = lim O(z)R  lim O(x)S = lim O()R

pil|p; pil|p; pi—0
» ... but much easier to integrate analytically.

1
O(O)V+/ drr " O(z)R
0

= (C’)(O)V + /01 dm—zelRO(x)S> + /01 dzx*"O(x) (R — 5)
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

« Subtraction method
+ Find a generic simple function S has exactly same IR singularity as real matrix element

lim O(z)S = lim O(z)R  lim O(x)S = lim O()R

pil|p; pil|p; pi—0
» ... but much easier to integrate analytically.

1
O(O)V+/ drr " O(z)R
0

- (O(O)V+ /O 1da;x2€m(9(x)5> + 12EI() _.

Finite Finite
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

« Subtraction method
+ Find a generic simple function S has exactly same IR singularity as real matrix element

lim O(z)S = lim O(z)R  lim O(x)S = lim O()R

pil|p; pil|p; pi—0
» ... but much easier to integrate analytically.

1
O(O)V+/ drr " O(z)R
)

1
/ dwx_zqRC’)(aﬁ)S +/ drx *R0O(z) (R — 9)
0 S —

Finite Finite

Analytically known
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

« Subtraction method
+ Find a generic simple function S has exactly same IR singularity as real matrix element

lim O(z)S = lim O(z)R  lim O(x)S = lim O()R

pil|p; pil|p; pi—0
» ... but much easier to integrate analytically.

1
O(O)V+/ drr " O(z)R
)

1
_ (0(0)v+ / drz 1 O@)S|) + || dea=2m0() (R - 9
Finite Finite
Analytically known Integrating numerically
in 4d
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

 Subtraction method

06|
\IR divergence

0.4

| O e
-0.2
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

 Subtraction method
» In above toy example
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Local IR Subtraction

: : Ui
* In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

 Subtraction method
» In above toy example
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Local IR Subtraction

: : Ui
In general, the phase-space integration over real matr

elementis very hard. Dedicated general approaches are
developed!

 Subtraction method
» In above toy example

s X

1 o x 1
0

T €IR

No approximation !
Numerical cancellations mitigated !

S e )
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Local IR Subtraction =

 Master formula: QD
ONLO = /dq><”>8+/dq><n>v+/dq><”+1>7z

:/dcb(”)BJr/d(I)(”) V+/dq)(1)5 +/d<1>(”+1) R — 9]

 The subtraction countertérm S should be chosen:

|t exactly matches the singular behaviour of real ME
* |t can be integrated numerically in a convenient way
* |t can be integrated exactly in d dimension

* |tis process independent (overall factor times Born ME)

* In gauge theory, the singular structure is universal

(p+k)* = 2E,E(1 — cosb,)

¢ Collinear singularity:
lim |M,11|? ~ |M,|* PAT(2)
p//k

® Soft singularity:

: PiP
lim |M,, . 1|? ~ MY |2 J
k—lz%) | '+1| zlj: | n | ]).,;AT pj ll
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Two Widely-Used Subtraction Schemes

Dipole subtraction FKS subtraction
Catani, Seymour, hep-ph/9602277 & hep-ph/9605323 Frixione, Kunszt, Signer, hep-ph/9512328
® Most used method ® | ess known method
® Recoil taken by one parton ® Recoil distributed among all particles
— N3 scaling — N2 scaling
® Method evolves from cancelation of @ Probably (?) more efficient because less
soft divergences subtraction terms are needed
® Proven to work for simple and ® Method evolves from cancelation of
complicated processes collinear divergences
¢ Automated in MadDipole, ® Proven to work for simple and
AutoDipole, Sherpa, Helac-NLO, ... complicated processes

® Automated in MadGraph5_aMC@NLO
and in the Powheg box/Powhel
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FKS Subtraction Scheme S

» The real ME singular as . -
™ IRgnit 1 1 §i = NE
&i 1 — i Yij = cosb;;

» Partition the phase space in order to have at most one soft
and/or one collinear singularity

Rd®" T =% 5 R Y Si=1
19 19
S@j%lifpi-pj%o
Sz'j — 01 Pm - Pn — Oa {man} # {7/7]}
* Use plus prescriptions to subtract the divergences

1 1
dop =) (_> ( > & (1= yij) SiyRA® )
+ +

i 1 — yij

[ ac (§)+ 16 - [alO=10 [, <ﬁ)+ o) = [ a0 =90
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FKS Subtraction Scheme

- Counterevents:
® Soft counterevent (&;—0)
® Collinear counterevents (y;j—1)
® Soft-collinear counterevents (§;—0 and y;j—1)

° - / o) — o(1) f
. Ty dy - .

— Y

I

Real emission Subtraction term

® |f i and j are on-shell in the event, for the counterevent the

combined particle i+j must be on shell
® ;+j can be put on shell only be reshuffling the momenta of the

other particles
® |t can happen that event and counterevent end up in different

histogram bins
® Use |R-safe observables and don’t ask for infinite resolution!
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LECTURE 2

NLO CALCULATIONS &
EVENT SIMULATIONS AT NLO QCD

NLO QCD + PS
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How To Improve Theoretical Predictions ? e

\
Q]\I{b N\*‘O

. Common Principle:
+ Adopt the advantages of different aspects

Hard interaction Parton shower

Hard and Resolved Soft and/or Collinear

+ Balance the accuracy over the steps in the simulation chain

+ Improve not only the single steps but also their merging

« TWO main directions:
+ Matching

- Avoid double counting between NkLO (k>0) MEs and PSs
+ Merging
= Include more real radiation MEs (formally higher order, improve kin.)

= Subtract double counting of real radiation from MEs and PSs
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How To Improve Theoretical Predictions ? S
3

e

. Common Principle:
+ Adopt the advantages of different aspects

Hard interaction Parton shower

Hard and Resolved Soft and/or Collinear

+ Balance the accuracy over the steps in the simulation chain

+ Improve not only the single steps but also their merging

. Two main directions:
+ Matching
- Avoid double counting between NkLO (k>0) MEs and PSs

+ Merging
= Include more real radiation MEs (formally higher order, improve kin.)

= Subtract double counting of real radiation from MEs and PSs
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Another Double-Counting Issue e

\

. Matching to parton showers: avoid double counting

S

SDU SUMMER SCHOOL HUA-SHENG SHAO




Another Double-Counting Issue S

. S
. Matching to parton showers: avoid double counting T
Parton shower i
&
>vvvv >WM % Born+
Q’b@, Q)QQ’L \/lrtual
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Another Double-Counting Issue S
o

N\’O

. Matching to parton showers: avoid double counting

Parton shower i

VAN
N

Born-+
% >W" Virtual

>MM/

Real emission
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Another Double-Counting Issue SR

. Matching to parton showers: avoid double counting ==

Parton shower i
e Born—+
3 Virtual
&
QO
=
% Real
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Another Double-Counting Issue SR

. Matching to parton showers: avoid double counting ==
Parton shower

JIJ

S Born+
A Virtual
-

D)

s

e Real

* Double counting between real emission and parton shower

* Double counting between virtual corrections and the non-
emission probability via the Sudakov factor in parton shower
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Another Double-Counting Issue

* Like LO, let us wrongly generate events separately <
from Born, virtual and real parts, and then pass these
events to a parton shower:

do_lr\llaﬁ\(fﬁ—PS = B+ dé(”)lﬁfg qu)(nﬂ)[ﬁvgl)
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Another Double-Counting Issue e

9

* Like LO, let us wrongly generate events separately <«
from Born, virtual and real parts, and then pass these

events to a parton shower:
dgﬁii\(f)ews = B+ V] d@”ﬁﬁ% qu’(nﬂ)[ﬁ?gl)

Parton shower operators
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Another Double-Counting Issue

* Like LO, let us wrongly generate events separately <
from Born, virtual and real parts, and then pass these
events to a parton shower:

do_lr\llaﬁ\(fﬁ—PS = B+ dé(”)lﬁfg Rd@(nH)[&gl)

- Because of unitarity of parton shower, we should get
full NLO cross section after expanding PS operators
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Another Double-Counting Issue

* Like LO, let us wrongly generate events separately ;
from Born, virtual and real parts, and then pass these
events to a parton shower:

doRiis ps = [B+ V] dO™W I, + RV 1Y

- Because of unitarity of parton shower, we should get

full NLO cross section after expanding PS operators
* Letus check ...

Inie = A, + A, ddD 2

_Pa C
o —b

Aa — €XDP <_/d(1)(1) ;;_Pa—ﬂjc> =1 — /dq)(l);—;_Pa_)bc -+ O(@g)

Qg Qg
Inic = (1 ~ / ch><1>2—PHbc> +d®) = Pyspe + O(a)

AR ps = (B+V)dd™ + RAD )

+Bdd™) (dcb“);—;Pﬁbc — / d<b<1>% ﬁbc> +O0(adt?)
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Another Double-Counting Issue

* Like LO, let us wrongly generate events separately ;
from Born, virtual and real parts, and then pass these
events to a parton shower:

doRiis ps = [B+ V] dO™W I, + RV 1Y

- Because of unitarity of parton shower, we should get

full NLO cross section after expanding PS operators
* Letus check ...

Inie = A, + A, ddD 2

_Pa C
o —b

Aa — €XDP <_/d(1)(1) ;;_Pa—ﬂjc> =1 — /dq)(l);—;_Pa_)bc -+ O(@g)

Qg Qg
Inic = (1 ~ / ch><1>2—PHbc> +d®) = Pyspe + O(a)

AR ps = (B+V)dd™ + RAD )

1+ Bdd ™) (dq)(l);_;Pa—)bc — /dq)(l)% a—>bc> + (9(042+2) # donpo + (’)(Oégw)
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The MC@NLO Method

cured by the so-called Monte Carlo counterterms
A = exp (—/dCI)(l)MC>
Ive = A+ AdeWMC =1 - /dcl><1>Mc +deMMC + 0(a?)
* The MC@NLO cross section is:
doNLO+PS = (B +V+B / d<I><1>MC> do™ ") (R — BMC)d D (D
» Expanding the Sudakov up to NLO:
dg%&g@g%so = (B +V + B/dCI)(l)M(J) dd() (R — BMC) Adp(n+1)
+B (dq><1>M(J — / d<I>(1)MC) dd™ + O(alt?)

= doxro + O(a2t?)
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The MC@NLO Method S

e

* The MC counterterm has remarkable properties:

* Avoiding double counting

« Matching the IR singular behaviour of the real ME, making it
possible to generate unweighted events (up to a sign though)

* A smooth matching between PS and ME: in the IR (hard) region,
same shape as PS (ME) 103

E ttproduction at the LHC MO —
: NLOsHWE |

10° E LOsHWE — =

o per bin [pb]
S )
o —

—h
<
e

—h
<
n

/
L

o
—h

10 100 1000
P1(SYs)
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The MC@NLO Method S
o

N\’O

* The MC counterterm has remarkable properties:
* Avoiding double counting

« Matching the IR singular behaviour of the real ME, making it
possible to generate unweighted events (up to a sign though)

* A smooth matching between PS and ME: in the IR (hard) region,
same shape as PS (ME)

 However, the MC counterterm is PS dependent.
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The MC@NLO Method S
o

N\’O

* The MC counterterm has remarkable properties:
* Avoiding double counting

« Matching the IR singular behaviour of the real ME, making it
possible to generate unweighted events (up to a sign though)

* A smooth matching between PS and ME: in the IR (hard) region,
same shape as PS (ME)

 However, the MC counterterm is PS dependent.

* Two type of events:

doNTOADS = <B +V+B / d<I>(1)MC> Ao I, + (R — BMC) do D i

S-event H-event
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The MC@NLO Method S
o

N\’O

* The MC counterterm has remarkable properties:
* Avoiding double counting

« Matching the IR singular behaviour of the real ME, making it
possible to generate unweighted events (up to a sign though)

* A smooth matching between PS and ME: in the IR (hard) region,
same shape as PS (ME)

 However, the MC counterterm is PS dependent.

* Two type of events:

doNSSTES = <B +V+B / d<I>(1)MC> Ao 1), + (R — BMC) do+D it

S-event H-event
Without showering, NLO events from LHE file is NOT physical.
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The POWHEG Method e

Nason (JHEP'04) \
N

* In the POWHEG formalism, it modifies the Sudakov for
the first emission.

- Q
A(Q, Qo) = exp (—/ d@(l)g)

o = Q. Qo)+ AQ.nae)
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The POWHEG Method & g»

Nason (JHEP’04) \

* In the POWHEG formalism, it modifies the Sudakov’
the first emission.

- Q
A(Q, Qo) = exp (—/ d@(l)g)

Iuc = A(Q, Qo) + A(Q, t)d@(l)g

Where 7 is the scale at which R/B is evaluated
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The POWHEG Method

* In the POWHEG formalism, it modifies the Sudakov f6
the first emission.

- Q
A(Q, Qo) = exp (—/ d@(l)g)

o = Q. Qo)+ AQ.nae)
* The POWHEG cross section is:

JoPOWHEG _ (B LYy / d<1>(1)72> Jo T
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The POWHEG Method

- In the POWHEG formalism, it modifies the Sudakov f&
the first emission.

- Q
A(Q, Qo) = exp (—/ d@(l)g)

o = Q. Qo)+ AQ.nae)
* The POWHEG cross section is:

JoPOWHEG _ (B LYy / d<1>(1)72> Jo T

* Verifying there is no double counting.

X R _ dA(Q,1) “ 1A CORA _A _1_ A
A(Qat)dq)(l)g = Jt */0 th(Qat)d(I) B — A(Q? Q) A(Q?QO) =1 A(QaQO)

t integration goes to |
R R
doROVIEG — (B +V+ /dq><1>7z) Ao (1 - /dcl><1>— +doM = 4 (9(@)

B B
= doNL,0 + O(Oég_'_Q)
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The POWHEG Method ST

R
doNCOPS = <B+V+ / d<I>(1>R> o™ ( (Q.Qo) + A(Q,t)deV) )

global K factor modified Sudakov
for |st emission

® Note that when matching to PS one has to veto emissions
harder than 7 (in the Powheg formalism, is has to be interpreted
as transverse momentum), even for showers with a different
ordering variable
® Formula to be modified for angular-ordered PS in order to

keep color coherence

* MC@NLO and Powheg are formally equivalent at NLO level. In

practice, there are many differences between the two
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MC@NLO vs POWHEG S

N\’O

- The two methods can be cast into a single formula
donro+ps = B (AS(Q, Qo) + A*(Q, t)ddV R—> de'™ + R7 e+

B
B :B+V+/d<1>(1)725

singular  finite

MC@NLO R°=bBbMC default F=1
Powheg RY=FR, RS = (1 = F)R spess romsingulur pure of R
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MC@NLO vs POWHEG

* The two methods can be cast into a single formula

S
der e = B [ A0 0 + A0 1ddO T g 4 R f gan+D

)
h~

g P2 pr>h are suppressed

my, = 140 GeV - LHCQ7TeV

[% Y l'lqt ."\'NL'L+.\:'.\’I,<'I)
_,,;"'r"}___f“ MC@NLO (Pythia) ------------
107! | =t POWHEG (Pythia) —— .
g = POWHEG (Pythia) DAMP140 ;
L_{
O
= 10-2 MC@NLO naturally matches analytic . ¢q
= : resummation+FO curve at large pr of R
= (without damping) overshoots
= - | the FO
T ] recovers matching at large pr
102 - l_i—\— —
1 1 1 1 " " L

t‘\') f L1l
(WS g 4
S

0 50 100 150 200
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MC@NLO vs POWHEG

Parton showers are (usually) not exact in the soft limit:
MC@NLO needs an artificial smoothing

MC@NLO does not exponentiate the non-singular part of the
real emission amplitudes

MC@NLO does not require any tricks for treating Born zeros

POWHEG is independent from the parton shower

(although, in general the shower should be a truncated vetoed)

POWHEG has (almost) no negatively weighted events

Automation of the methods:
http://amcatnlo.cern.ch, http://powhegbox.mib.infn.it, http://
www.sherpa-mc.de
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Try to play/run MadGraph5_aMC@NLO according to the tutorial

3. NLO runs

https://indico.ihep.ac.cn/event/7822/contributions/98095/attachments/52139/60103/Tutorial_MG5aMC_Hefei2018_NLO.pdf

MG5aMC installation instruction

https://indico.ihep.ac.cn/event/7822/page/1116-tool-installation

The code becomes too large that no one can understand everything.
If you have any questions, please post your questions on the launchpad !

https://launchpad.net/mg5amcnlo
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