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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Feynman integrals involving several energy scales can be
given by some finite linear combinations of generalized
hypergeometric functions.

@ Any commonly used functions of one indeterminate of
analysis can be expressed as the Gauss function

a,b o (a), ()
’ = AN 1.1
(4] 2 e, < a1
where (a), = I'(a + n)/I'(a) is the Pochhammer notation.

@ For the given parameters a, b, c, there are 24
hypergeometric series solutions totally of the partial
differential equation (PDE) which can be written as the
GKZ-system on the Grassmannians G, ,.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Some hypergeometric functions are defined on the
Grassmannian G, , in a natural way, where a point of
Grassmannian G, , is a k-dimensional vector subspace C*
of n-dimensional vector space C" (k < n).

@ One can regarded the manifold Z,_, of k x n matrices of
rank k being a bundle space over the base space G, ,
whose projection Z, — G, , assigns to each matrix Z,_, the

k-dimensional vector subspace spanned by the row vectors
of this matrix.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ We consider an arbitrary smooth function on the manifold
Z, , satisfying the homogeneous condition

n

B, —
POz ) = LI Gy az) o #0, (12)

i=1

where z,, (i = 1,--- ,n) denotes the i-th column vector of

the k x n matrix Z_,, and
iﬁi:nfk. (1.3)
i=1
® Letr=(z,,---,1,) denote the local coordinates of the
(k — 1)-dimensional projective subspace, and the volume
element
k
w() =D (=) "ldry Aeedi_ Nt A Ay (1.4)
i=1



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The integral

Q) = [ 16w 15)
N
satisfies the homogeneous conditions

F(g-z) = |detg|_1F(z), g € GL(k, C),

oo, —1 X
Fiz-x)=[]x" FR, x=dag(x,, - :x,) - (16)
i=1

Here S is an arbitrary (k — 1)-dimensional hypersurface in
the vector space C* not passing the origin.

@ Obviously the first condition is equivalent to the system of
partial differential equations (PDESs)

XH:ZU;F =5 ,F, i€k, i €[4, (1.7)

1yl
j=1

with 0, denoting the Kronecker symbol.




|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The second condition of Eq.(1.6) is equivalent to the
system of PDEs

K
OF
> Z,jai(a,-*l)l"q j € ,n], (1.8)
I

@ Using the GKZ-system presented above, we can construct
the fundamental solution system which is composed of the
hypergeometric functions of local splitting coordinates z;.
In addition, the generalized Gauss inverse relations, the
generalized Gauss adjacent relations, and the generalized
Gauss-Kummer relations can be derived accordingly.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ In a-parameterization, for an example, the Feynman
integral of one-loop self-energy is

2
1

oo aP
= 7(AiE)2—D/2/0 dodo, / (zlﬂi)qoexp {i[a](qz 7mf)
+ay(@+p)’ = md)]}

- 2=D/2 { i7r(24—1)) }F<2 — b2 (AZRE)z—D/z
- (4m)P/2

. 2 2
iA e (0", m ,mz)

X /Sw3(t)6(tlt2 +14 +t2t3)(t]t2)17D/2t3D/271

D/2—2
)

X [[1 m? + rzmi + t3p2] (1.9)

@ The hyperplane S is given by the equation 7, + 1 = 0, and
wi(t) = dt, Ndt, — dt, Ndt, + dt, A\ dt, is the volume element
in the projective plane P?, respectively.



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The integral can be embedded in the subvariety of the
Grassmannian G, , where the first row corresponds to the
integration variable ¢,, the second row corresponds to the
integration variable #,, and the third row corresponds to the
integration variable ¢,, respectively.

@ The first column represents the power function ! ~2/2, the
second column represents the power function tZ‘*D/z, the
third column represents the power function tf/zfl, the sixth
column represents the power of the linear polynomial
, ml2 + tzmg + tgpz.

@ The polynomial under ¢ function is taken as the fourth and
fifth columns of the subvariety of the Grassmannian G, ,.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ In order to embed the homogeneous polynomial

(t,t, + t,t, + t,¢,) under ¢ function as the fourth and fifth

columns of the Grassmannian G, ,, we rewrite

Wiy Hih th,

e, @w2e, 1 T, w3615 T whe, )25 (1.10)

where o,, (i =1, 2, 3) are elements of the permutation

—

group S, = {e, (45)} on the column indices 4, 5.
@ Takingo, =0, =e, 7, (45)

= (45), we have

Yuhs =1 55, =1, Huus=1. 1.

@ The solution of Eq.(1.11) in Z,

GaTHa=uy =1 =5 =55=1. (1.12)
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The integral can be embedded in the subvariety of the

Grassmannian G,
1 0 0 1 1 r
g’:( 0 1 0 1 1 7 > , (1.13)
0 0 1 1 ry

: _ 2 _ 2 _ 2
with r, =m?, r, =mJ, r; = p~.

@ Because the fourth and fifth columns in the matroid
Eq.(1.13) coalesce into a same point in projective space

P2, ¢''% is reduced to the subvariety of the Grassmannian
G, , represented by the matroid & of size 3 x 5

10 0 1 r
¢ = o 1 0 1 r% . (1.14)

with the exponent vector
= D D D D 5
Bug=2-3,2-3 3 -L7-1)eC.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Similarly the Feynman integral of 1-loop massless triangle
diagram is embedded in the subvariety of the
Grassmannian G, ; represented by the matroid in Eq.(1.14)
with r, = p? ., r, = p? = (p, + p,)* and the exponent vector

Bupy=(112-21-2)eC.

@ The Feynman integral of 2-loop vacuum is embedded in
the subvariety of the Grassmannian G, , represented by
the matroid in Eq.(1.14) with r, = m?, i = 1,2,3 and the
exponent vector

ﬁ(zm:(z_%z_%z—% %_21D_2)€C5.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The Feynman integral of 2-loop sunset diagram can be
embedded in the subvariety of the Grassmannian G,

1

& = ( 2 ) , (1.15)
3
4

with ro=m?, r,=m? r,=m?, r 2 and the exponent

2
vector 3

~ v

o 0 1
0o 0 1
10 1
0 1 1

co o -
co =0
<

L =D
=2-2,2-2 27§ b -2, D-2)ec".

(L3)
@ The dimension of the solution space of the GKZ system of
the Grassmannian G, is 4.

@ In the above cases, the Feynman integrals are embedded
in the general strata of the Grassmannians. For example,
the determinant of any 4 x 4 minor is nonzero in Eq.(1.15).
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The Feynman integral of 2-loop self energy with 4
propagators can be embedded in the subvariety of the
Grassmannian G,

2 J . (1.16)

£2L4 _ (
with r, = m?, r, = m?, r, = m?, r, = mf, r, = p?, and the
exponent vector

Bo,=0,11113-D -2 D-3)¢€ C8.

cocooco~—
coo~o
co~oo
o—ooco
—oooo
S ==
I PRI

@ The subvariety presented by the matroid in Eq.(1.16) is a
special stratum (not general stratum) of the Grassmannian
G, , because the determinant of the 5 x 5 minor
det(¢?# )y =0.

{1,2,3,4,7}
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The subvariety representing a general stratum of the
Grassmannian G, , is given by

;=
R

e = (1.17)

==
S oo = O
)

co—~oco
o—~ococo
—ocoocoo
= =

o

S

=
~
o

For the general vectors (u,,--- ,u,) € C°, (r,,--- ,r,) € C°.

@ The dimension of the solution space of the GKZ system on
the general stratum of the Grassmannian G, is 15. We
can construct the hypergeometric solutions for the
GKZ-system on the general stratum of the Grassmannian,
the number of the independent variables in those
hypergeometric functions are eight. Certainly, we derive
the generalized Gauss inverse relations, the generalized
Gauss adjacent relations, and generalized Gauss-Kummer
relations among those hypergeometric solutions.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Using the Gauss inverse relations and Gauss-Kummer

relations mentioned above, we derive that the dimension of
the solution space of the GKZ system constraining on the
special stratum of the Grassmannian G, is 5, where the
stratum is defined by u, = --- = u, = 1, u, = 0 and
(r,,---,r,) € C°is a general vector.

The fundamental solution systems of the GKZ system
constraining on the special stratum are composed of the
canonical hypergeometric functions in which the multiplicity
of sums and the number of the independent variables are
all equal four.

The Gauss relations among the canonical hypergeometric
functions are induced by those on the general stratum of
the Grassmannian G, , accordingly.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The Feynman integral of 2-loop self energy with 5
propagators can be embedded in the subvariety of the
Grassmannian G,

1 o 0 0 0 O 1 1 r
o 1 0 0 0 0 1 1 ry
us _| 0 0 1 0 0 0 1 1 o
£ - 0o 0 0 1 0 0 1 1 T, (1.18)
0o 0 0 0 1 0 1 1 rs
o 0 o0 0 0 1 1 0 e
iR o 302 — 2 e — 2 ) 2 _ 2
with 7, =m, r,=m;, ry =m;, r, =m;, r{ =mg, ry = p-,

and the exponent vector
By =, 1,1,1,1,1,3-D, -2, D—4) c .

@ The subvariety presented by the matroid in Eq.(1.18) is a
special stratum (not general stratum) of the Grassmannian
G, , because the determinant of the 6 x 6 minor

det(€20 ) = 0.

1,2,3,4,5,8}

17/96



|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ The subvariety representing a general stratum of the
Grassmannian G, is given by

=

o

& = (1.19)

<

co~ocoo
IS

=l

(=l = =]

coo~—oo

co—ococo

—cococoo
5

ut ot

o

For the general vectors (u,,--- ,u,) € C%, (r,,--- ,r,) € CS.

@ The dimension of the solution space of the GKZ system on
the general stratum of the Grassmannian G, is 21. We
can construct the hypergeometric solutions for the
GKZ-system on the general stratum of the Grassmannian,
the number of the independent variables in those
hypergeometric functions are ten. Certainly, we derive the
generalized Gauss inverse relations, the generalized
Gauss adjacent relations, and generalized Gauss-Kummer
relations among those hypergeometric solutions.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ Using the Gauss inverse relations and Gauss-Kummer

relations mentioned above, we derive that the dimension of
the solution space of the GKZ system constraining on the
special stratum of the Grassmannian G, is 6, where the
stratum is defined by u, = --- = u, = 1, u, = 0 and
(r,,---,r,) € C%is a general vector.

The fundamental solution systems of the GKZ system
constraining on the special stratum are composed of the
canonical hypergeometric functions in which the multiplicity
of sums and the number of the independent variables are
all equal five.

The Gauss relations among the canonical hypergeometric
functions are induced by those on the general stratum of
the Grassmannian G, , accordingly.
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|. Embedding

|. Embedding of Feynman Integrals in Grassmannians

@ In a similar way, we can embed the Feynman integrals of
2-loop triangle diagrams in some special strata of the
Grassmannians. Meanwhile, the Gauss relations are
obtained on the general stratum of the Grassmannians.

@ The canonical hypergeometric solutions are gotten through
constraining that on the general stratum of the
Grassmannians. Meanwhile, the Gauss relations are
induced by those on the general stratum of the
Grassmannians.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

The hypergeometric function on the general stratum of the
Grassmannian G, ; with the splitting coordinates in Eq.(1.14)
satisfies the GKZ-system as

{9,4+0,5}26, & =-520, ¢,

{9, +0,5}2B, & =-5,28, ¢,

{94+ 055 }28, & = —,2(8, &) ,

{9140+ 0,4 +0,, 128, &) = (8, - DB, &),

{9, 5+0,5 + 0,5 }28, &) = (8 — V2B, &) , 21)

where the Euler operators ¥, = &, ,0/9¢, ;, and the exponent
vector B = (B,,---, B,) € C° satisfying 3" 3, = 2.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Corresponding to the Grassmannian G, ; represented by the
matroid in Eq.(1.14), the exponent matrix is generally written as

By —1 0 0 X4 YN
0 B, — 1 0 a, s . 2.2
0 0 ,83 —1 Qs y as s

where

5 3 3
Zﬁizz’ Zaj,4:ﬂ471’ Zaj,5:6571
i=1 j=1 j=1

ay + a5 = —/3/., j=1,2,3. (2.3)

Six indeterminate exponents satisfy four independent linear
constraints.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Let V' ={1,--- ,5} denoting the set of indices of the columns in
Eq.(1.14). Choosing the spanning subset B of the vector
subspace C? in the vector space C° and the integer lattice on
the complement A\ 3, one gets the hypergeometric function

accordingly.
For example as B = {1,2,3}, there are on the matrix
of integer lattice whose submatrix composed of the fourth- and

fifth columns is formulated as +n, E{) & n,EY), where n, , > 0,
(i,j) € {(1,2),(1,3),(2,3)}, and other elements are all zero.

i i 0 0
Integer lattice (Ozxx‘ inlEil) in2E§’>): Eil) = ( 1 —1 ) s

, 1 —1 1 1
E§-> = 0 0 JED) = —1 1 .
3 —1 1 3 0 0

23/96



IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(2))
0 0O —n,
=1 0 0 O —n, , (2.4)

0 00 —n—n n +n,
@ the exponents are given by the matrix

( 0 B—-1 0 0] -8,
0 0 B—1 B -1 1-8-8,

where ¢, , = a,, = 0 because n, , are nonnegative.

B, -1 0 0 0] -8,
) , (2.5)
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is

-8 -8 )
) RO (r]) l(rz) 2(r3) 37 P4
Plraa B 8 =455 ) det(& )

{1,2,3}

) LE S
><<p{172,3}(ﬁ, . rl)

- A<{Il),2,3} B)Yr) ™1y T2 () T

m 5
><<p{1,2,3} B, ’z’ " )

ey B )= 3B, ny )5 02 (2.6)
nyny ’
where det(E{l X g}) = 1 denotes the determinant of the 3 x 3

minor of the matrix in Eq.(1.14) composed of the 1st, 2nd,
and 3rd columns.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Where
r(8;)
A - s :
REE A Pl =BT = B,)r2 = B; — B,)
l —
DB,y = ooy Oy 07 Bl 1, @7)
{1,2,3} n 12— By — By)

nl+n2
with the Pochhammer notation (a), = I'(a + n) /T'(a).

@ The geometric representation of the hypergeometric
function is determined by the exponent matrix presented in
Eq.(2.5), the determinant of any 2 x 2 minor of the
submatrix consisted of the third and fourth columns is zero.

In other words, the two columns coincide as a point on the
projective plane P>.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric
representations of G,

() (b)

Figure: 1 The geometric configurations of the hypergeometric
functions on the projective plane P?, where the points a, - - - , e denote
the indices of columns of the 3 x 5 exponent matrix.

The geometric representation of the function <I>§1) ,, is drown in
Fig.1(a) where {a,b} = {3,4} and {c,d,e} = {1,2,5}.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,5 n]Eg(l) + ”2E3(3))
000 —n,
=100O0 n-n —-n-+n |, (2.8)
000 —n
@ the exponents are given by the matrix
e[|
B, -1 0 0 0] -8,
= 0 B, —1 0 B,+pB,—1 B, +5,—1 ](2.9)
0 0 B—1 —B, 0]

where o, , = a,, = 0.

3,5
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is formulated as

@) B o =40 @)y

{1,2,3} {1,2,3}
e 8, —z —?)
saf])‘“}(ﬁ, )= > cﬁm}(ﬁ, nyom)x 2 (2.10)
iy
@ Where
4O () = T(B,)T(Bs) ’
{123} T(1— B)C(1 = By)T (B, + BT (B, + B,)

28y, (B,
n i By + Bs) ) (Bs +B,)

BBy =

e (2.11)

i)

Note that 1/(a)_ = (—1)"(1 - a),.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The geometric representation of the hypergeometric
function is determined by the exponent matrix presented in
Eq.(2.9), the determinants of the submatrices
det(|lally, ,5,) = det(|lll,, ;) = 0.

@ The geometric representation of the function <I>< ) . 18
drown in Fig.1(b) where a = 2, {b,c} = {1,5} and
{d,e} ={3.4}.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Taking the affine spanning B = {2,4,5}, one finds
det(gm‘s}) = r, — r, which differs from det(& 1.2.3}) =1,
where det(,, , ) denotes the determinant of the 3 x 3

minor of the matrix in Eq.(1.14) composed of the 2nd, 4th
and 5th columns.

@ In addition,

— 0 0
. }3 1 37N
- ¢ = k 1
(2,45} 13 P 0 7r3 = 1 0 . (2.12)
1 1
37N 0 37" 0 !
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ Corresponding to the integer lattice

(0,,5|(n,E ( ) +n E3 )N\B)
0 -n, 00
=| n-n 0 —n+n 0 0 |, (2.13)
—n, 0 00
@ the exponents are given by the matrix
e[|
0] B, —1 —B, 0 0
=| B +5 -1 0 B,+pB,—1 B, —1 0 2.14)
_/85 0 @ 0 ﬂs -1
where o, = a,, = 0.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

@ The generalized hypergeometric function is

(ry =) PP *ﬁf’(r, —r)~h

(2) — 4@ 3
@{27475} (B, &) = A{”S}(B) der(e

{245}
By 4+B,—1 (2) rponly—n)
X(=r )27 »B, =, ——=—
{2,4,5} r r:‘(r1 — 2)

—4® By — rl)l—ﬁ] —Bs (r3>/3| +8s —1(r _ r2)752

{2,4,5}
BBy =1, oy —n)
X(=r)) PN (N r],w]fz)),
e (B x5 = <2> ((124)(35)ﬁ, X, x) - (2.15)

{2 4,5}
@ The geometric representatlon of the hypergeometric
function is determined by the exponent matrix presented in
Eq.(2.14), the determinants of the submatrices

det(HaH{m‘s}) = det(HaH{z,xat}) =0.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

® The geometric representation of the function ®(2) _ is

drown in Fig.1(b) where a =4, {b,c} = {1,5} and
{d.e} = {2,3}.

@ In order to obtain the analytical expressions in the whole
domain of definition, we present the fundamental solution
systems under all possible affine spanning B
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

Except the constant factors and power functions, the
corresponding hypergeometric functions can be written as

i/f“}(ﬂ X, x) = {1 2z}((34);3, L5,
({325}(5 X X)) = w{] 2?}((345);3 ERESR
wf{?,m} B, x5 %) = {1 ) 3}((234)& %) s
vi?u}(ﬁ, X, %) = ("2 (@358, 5, %) ,
({;H}(B X X)*tp ((1234)5, %)
i‘;”}(ﬁ X, %) —Ap{ ((12354);-), Xy 1) s
o) gy B xo ) =) 23}<<z4>(35>;3 Xs %) »
Lpf{;A,S}(ﬁ’ %) = 4‘){1,2,3}((]24)(35)ﬁ’ )
Py @ ) =l (W6, 5, ), 2.16)

where the (3/4\), 64\5),

- are the elements of the permutation
group S, acting on the components of exponent vector 3 € C°.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric
representatlons of G,
ese ypergeome rC TUNCUONS, 77, 1=

are the first Appell functions, while ¢V, j =2, 4 6 7 9 "
are the Horn functions.

@ ltis easy to find that the convergent regions of pf{{)z .
\,9(7)7 ., and c< >2 ,, have nonempty intersections in a
connected component of definition domain, thus they
constitute a fundamental solution system in the proper

nonempty subset of the parameter space.

@ The linear combinations of hypergeometric functions on
the different nonempty proper subsets of the parameter
space are regarded as analytic continuations of each other.
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IIl. Functions

ll. Affine coordinates, Integer Lattice and Geometric

representations of G,

v, = C(i) q>(i)
(B, &) won (8) {1,2,3)<5» )
= Z C(i)(B)q)(i) 8, &
i={1,5,6} {1,2,3}
= Z C(i)(ﬁ)q)(i) 8, &
i={3,7,8} {1,2,3} 77
= @) (3yp®
> el 6
i={4,5,12} 12,3
= @ (8ya®
Z c(B) (12,3} B, &
i={8,9,10} 2,
= > @ 6. @17)
i={10,11,12} 12,

Using the Gauss inverse relations below, we can derive the
combinatorial coefficients uniquely, then continue the analytic
expressions to the whole domain of definition of the Feynman
integral by the Gauss-Kummer relations.
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lll. Inverse

I1l. Generalized Gauss inverse relations

@ The Gauss inverse relations include the following analytic
continuation together with its various variants
)

R ( a,b x) _ F(f)l“(b*a)(_x)fa JF) ( al+a—c

¢ T T(B)T(c —a) I+a—b
L(e)T'(a —b) —b bl4+b—c |1
er(*x) 2F) ( l—a+b x) . (3.1)

@ Note that this transformation satisfies the idempotent
property. Performing the inverse transformation on the
terms of the right side, one finds that the sum of the results
after transformation is exactly the term on the left side.
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lll. Inverse

I1l. Generalized Gauss inverse relations

The Gauss inverse relations, i.e. the analytic continuation
formulas from one connected component to another in the
domain of definition, are obtained through the Mellin-Barnes’s
contour on the corresponding complex plane.

The Mellin-Barnes representation of the hypergeometric

function cpg)z , is

DB,)06B)00 = B )y
T B, — B, 0023
o /[oo DBy +5)0(B) +5,)0(1 =B, +5, +5,)
- 2mi)? J—ico re- 63 - BA +5 +SZ)

XD (=5 )T (=s5,)(—x,)"1 (=x,)2ds, \ ds, . (3.2)

(B, x, x)
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lll. Inverse

. Generalized Gauss inverse relations

Performing the transformation 3, + s, = —s, on the complex
plane s,, we rewrite the Barnes’s contour integral in the
right-handed of above equation as

(—x) "0 /,-oo T(B, +5)T(B) +s)T(1 = B, = B, +s5, =)
@eri)?2 J-ico LB, +85+s — s;)

XD(=s )T (=5))(=x)"1 (=) T2as, A as)

_TBITBITU =8, = B) 5 s
= T8, + By) () ey B ) o
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lll. Inverse

. Generalized Gauss inverse relations

Under the affine transformation 1 — 3, + s, + s, = —s, on the
complex plane s,, the Barnes’s contour integral in the
right-handed of Eq.(3.2) is formulated as

(_Xz)ﬁfl /,-OO (B, +5,)0(B, +B, —1—5, — s;)F(l — B, +5, +s;)
@ri)? Joico L1 =8y =)

XD(=s )T (=5)) (=5 )1 (=x)) 1 "2ds; A\ )

_ LB +8, —DLBITU = B) 5, 1 (1) n
= Ta— 5, (—x,)"4 Lp{|72,3} B, »’52’ X2)~ (3.4)
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lll. Inverse

[l. Generalized Gauss inverse relations

Then the residue theorem implies the following equation:
Gauss inverse relations

) c
o), By )

DU =8 =BITC=8, =8 s @ 1
= T(8, + B5)T(1 — 5,) (=x) ]9"{1,2,3}(3, N Xz)

Similarly, we have
<{11>2 ICIES
_ra —FZ;I fé:;fﬂﬂé)_ 2 (o) 200, (8, % %)
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lll. Inverse

[l. Generalized Gauss inverse relations

We derive the generalized Gauss inverse relations for other
hypergeometric functions, for example

oW (B, %, x)

“{1,2,33
_ ”‘;S(f_ﬁgz’_‘);()‘;l(;f“)<7 e, B, i)

r(s, :(2;1;51:22)—64)( x)P2+hs 1 ({?23}(5 12 )
R TRt e @ o

OIS ot o Ly e
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lll. Inverse

I1l. Generalized Gauss inverse relations

;
w({lim} (B x5 %)

_ DB+ B —DLB, +65)  —5 (o) 1
= (= 8, = 5,)T(5) (=x,) ]¢{1,2,3} B, x, XZ)
DB + B5)T(1 — B3 — Bs) By+By—1 (9
TEOTa =By P P

1
B, —, xx
Gy

_ LBy +8, = DT(B, +8,) ey B (D 1
= (=x) "2¢ 8, T ) X))
1

T(l—8, —B)T(8,) 12,3}
DB, +BITU =85 —B) g +8.—1 (2 L
P =gy 0T P B ) oo
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lll. Inverse

[l. Generalized Gauss inverse relations

o® ’
Py B r )
_ T -8 - BITC-5, — B,) L1 ol
- F(B3+55)F(17ﬂ4) ( Xz) {173}(37", )

r, +8,—Hre-as, —54)( >[3 —1 (17) 8, X L

T3 )T = 5y) P @ 0
_ F(17B37£4)F(2*32*B4> Y- N ) i
=TT era_py ) s B o)
F(Bg +ﬁ4 -T2 - By, — 54) By—1 (1) 1 X,
. = —, =). 3.9
ERTOE— ol e D) @9
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lll. Inverse

[l. Generalized Gauss inverse relations

(12)

Cliagy B 1)
PO ZPITU =B =B (=00, (g, s,
(8, + B)T(1 — B,) Pl2,3)
LB, +B8, —Hre- g —54)( )/3 1,8 (g,
(6,01 —8,) P12}
r@-8 -B)TU-5-8) s (o il
AR T DS T S
LBy +B, —Nr2—pB, — 54)( )/3 1,00 (g,
(6,)0(1—8,) P12}

(3.10)
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lll. Inverse

I1l. Generalized Gauss inverse relations

@ Setting certain variable zero and using
1/(a)_, = (—=1)*(1 —a), and )_ B, = 2, those relations
recover the equation presented in Eq.(3.1). For example,
setting x, =0, x, = x in Eq.(3.5), we have

) _ Bys1 =8

o800 = ( S ]

(4) . B,1—Bs |1

Ap{lvzﬁ} 8. 0, x) =2 ( 231 +'345 x/)

(12) 1 By, 1 — B, 1)

N R S ]2) @11)

Thus the analytic continuation in Eq.(3.5) recovers the
equation presented in Eq.(3.1).
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lll. Inverse

[l. Generalized Gauss inverse relations

@ Idempotent properties of the Generalized Gauss inverse

relations. Substituting the following analytic continuations
into the right-handed side of Eq.(3.5)

(4) )

{123}(ﬁ, Xy, X))

T8, + B, — DT(B, + B,) 0 I
T'(l1— B, —B;)L'(B,) = 2) {122}(& X Xz)
DB, + BT — By — B,) By +B—1_® 1

rEora—gy sy B o)

(|2> )
{12:}“3 s %)

1

r@2-p, —B)ra -8, — B,)
= T ) e LB - o)

T(8, + B5)0(1 — B,)
T8, + B, - VT -6, — B,)

81, n o1
L(B,)T(1 - B,) (—=x;)"4 e 21}(5 , =), (3.12)
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lll. Inverse

[l. Generalized Gauss inverse relations

@ we have
(1)
P B s x)
_ {F(l - B, — B)T(B, +/34>F(ﬁ3 + B8, - DT Q2 — B, — B,)
T(8, + B;)T(1 — B, — Bs)T(B)T(L — B,)

L T@ + 8 - re - /3, — BOT(By + B, — DT(2 — B, — 54)}
L(8)T(1 — B,)T(8;,)T(1 — 5,)

oM
o)y B xp )

DU By — BB, +BTB, + )N = By — By)
T(BT(1 = By)

F(ﬂl +B8, —DI'C -8 —BII1 - B3 —BIT(B; + /34)}
(B, (1 *51)
X (= x)ﬁ3+ﬁ4 ! ({61)23}(,3, 2 i*l)
*
oD (B, x, x) . (3.13)

{]21}

Because I'(z)I'(1 — z) = w/sinmzand ) _ 5, = 2.
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lll. Inverse

I1l. Generalized Gauss inverse relations

@ Note that

{F(ﬁz +8, — DT@— B8, — BT — B; — B,)T(B; + B,)
T(B, + B)T(1 — B, — BT (BHT(1 — B,)
LDy + 8,000 = 8, = BT, + BITU = 3 = B) Vo
T(8,)T(1 — 8,)T(6,)T(1 — B,)

@ The combinations of Gauss inverse relations and
Gauss-Kummer relations below generalize the analytic
continuations of the Gauss functions presented in
(1.8.1.11)-(1.8.1.19) of Generalized Hypergeometric
Functions by L. J. Slater, (Cambridge University Press
1966). Those generalizations can be used to continue the
analytic expressions of Feynman integral to its whole
domain of definition.
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lll. Inverse

I1l. Generalized Gauss inverse relations

@ The images of the generalized hypergeometric functions
under the map of inverse transformation of certain variable
are the linear combinations of the generalized
hypergeometric solutions of the GKZ-system in the same
affine spanning.

@ The method presented here generalizes the approach
adopted in the work A new development of the theory of
hypergeometric functions by E. W. Barnes, published in
Proc. London. Math. Soc. 6(1907)141-177, and can be
used to derive the analytic continuations of any
generalized hypergeometric functions. For example, we
can derive the analytic continuations of the Pochhammer
functions ,,F),, and verify those continuations satisfying
the idempotent property accordingly.
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lll. Inverse

I1l. Generalized Gauss inverse relations

@ Note that the results presented here coincide with the
analytic continuations in Integration of the Partial
Differential Equations for the Hypergeometric Functions F
and F,, of Two and More Variables by P. O. M. Olsson,
published in J. Math. Phys. 5(1964)420-430, which are
derived through the transformation theory of low variable
hypergeometric functions to find the transformation
formulas of higher variable hypergeometric functions.

@ The application of the above method presented there has
limitations: the transformation formulas of higher variable
hypergeometric functions depend on the transformation
theory of low variable hypergeometric functions.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ The independent Gauss adjacent relations are the
following two equations

L'ZF]( a,cb x) :ax2F1< ac++1,lb x) s
(a—c+1)2F1< a,cb x)
=ayF ( atlb x) —(c—1)2F, ( h x) , @.1)

together with two equations obtained by the interchanging
a +» b in the above equations.

x)+czF]< a,bcfl

@ The adjacent relations of the hypergeometric functions in
the (n-1)-dimensional projective space are determined
from the quotient module of the free module C" by the
submodule generated by the coefficient vectors of the
corresponding GKZ-system.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ For the GKZ-system on the Grassmannian, the adjacent
relations of the hypergeometric functions are determined
by G, and its dual G

@ If the exponent vector 3 € C" satisfies > 8, = n — k, the

i=1
adjacent relations are written respectively as followings.

@ y=pP+e¢ cC" ic{l,--- ,n},and > ae €G,,, then
i=1

ia/(vj —Deg(v—¢, €)=0. 42
Where B C {1,--- ,n} is the proper subset of the columns
which spans the k-dimensional vector subspace in the C",
ande,, i € {1,---,n} denotes the i-th standard vector in

the standard basis of C".
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IV. Adjacent

IV. Generalized Gauss adjacent relations

n
o 'Y:ﬂfe,- S Cﬂ-, I € {1' an}’ and Zaiei € Gt”then

1

Zaj¢3(7+ef7 £€)=0. (4.3)
j=1

@ There are totally n independent adjacent relations from
above two equations.

@ Since the Gauss functions can be regarded as functions
on the Grassmannian G, ,, there are four independent
adjacent relations presented in Eq.(4.1) for the Gauss
functions.

@ For the Grassmannian G, ; presented in Eq.(1.14), the
5
exponent vector 3 = (8,,--- , 3;) € C° satisfying Y 8. = 2,
i=1
and B = {1, 2, 3}.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ The dual variety of the Grassmannian & in Eq.(1.14) is
given by the matroid
3 :< —_rl —_r1 —_r1 (1) (]) ) : (“4)
@ Correspondingto 8 +¢, = (1 +4,, 5,, 3,), we obtain
three independent adjacent relations among

@il)z . ief{l,--- 12} from Eq.(4.2).

B2, B O+ (8 =2 (Bre ey &)

+(Bs — @D (Bte —e, &) =0,

{1,2,3}
5,20, B O+ (B - (B, e )
+(Bs = @) LB, e, ©)=0,
B0 LB O+ (B, - (B —e 8
+(Bs = @) (Bt e, ) =0, (45)
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ Correspondingto 8 —e, = (8, — 1, B,, ---, 3,), we obtain
two independent relations among <I>§’I>7} with contiguous
parameters from Eq.(4.3) as

(i) 0]
(P{].z,}} B, &+ q){l,z,a}

+ol)l Bty =2 (B¢ e, &) =0,

() @ _
’1‘?{1,2,3}(3’ €)+r2‘1>{172,3} (B—e +e, &)

@) LB e, © =) (B e, =0 (46)

(B—e +ey, €

@ The independent adjacent relations of @5{_)“} are
concretely written as:

=8 = B[ B =) (Bre —e)]

P23} 12,3}
1 —
1= Bnel) LB —e) =0,
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ =8y = 8[el), B — o), (Bt —e)]

+('—ﬂ4)xlw{l“}(ﬁ+c —e) =0,

B0, B + By =0l (Bte —e)

(= By =)L), (Bre —e) =0,

By = Dxel) ) 8) + By el (B e e

By + B, = D[l LB ) —el) L (Be )] =0,

B =0l LB 8 (B te)

By 8, = 0el), L Be e+ Bel) (Be ) =0, (48)

here the variables x, , in the hypergeometric function YE}{ N is
omitted for concise.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ The generalized hypergeometric function L,OE}):” can be
written as

1= B,. By, B,

M ) —F (
¢{172=3}(ﬁ ) ! 2-B; =8

X, x2> s 4.9)

where F, is the first type Appell function.
@ The first adjacent relation is reduced as:

F}( 1=, By B )+ (=B85 F]( =By By 146, )

2=By =5, 2-8; -8, =B 4
41( L fziljﬁl )EO, 4.10)

we also suppress the variables x, , in the above equation
for concise.
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ As x, = 0, this relation is simplified as the trivial equation

_ 1= B, B,
ZFI( 2-B5 -5,

1 =By, B
x1)+ 2Fl( P xl> =0. (&1

® As x, =0, the adjacent relation in Eq.(4.10) is simplified as

%)

x2> =0, (4.12)

1—8,, B
ZFI( 2753*5]4

- 1= 8,, 1+ 8,
ZF'( 2=B5 =5,

(1= By)x, 1=B,, 1+8
"‘z)+2_[33_[34 ZFI( 3763*194l

which coincides with the first equation in Eq.(4.1).
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IV. Adjacent

IV. Generalized Gauss adjacent relations

@ Similarly we can verify that other adjacent relations
presented in Eq.(4.7) recover the well-known adjacent
relations of the Gauss functions as x, =0 or x, = 0,
respectively.

@ The adjacent relations of other affine spanning 5 are
obtained from the adjacent relations in ("), | (3) through
some permutation on components of the exponent vector
B e C.

@ The adjacent relations are adopted to formulae the
coefficients of powers of e =2 — D/2 in the Laurent series
of Feynman integrals at dimension of time-space D = 4 as
linear combinations of generalized hypergeometric
functions with integer parameters.
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V. Kummer

V. Generalized Gauss-Kummer relations

@ The third type Gauss relations are derived through
Kummer’s classification, which can be written as
JF, ( a,cb x) —a —x)C*“*b o, ( c—a,cc—b x)
=)

=(1-0"",F ( @ c=b
ﬁ) .1)

c

c—a, b

=01-0"",F ( .

and its various variants.

@ For the GKZ-system on the Grassmannian, the
generalized hypergeometric solutions corresponding to the
same geometric representation are proportional to each
other in the intersection of their convergent regions.
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V. Kummer

V. Generalized Gauss-Kummer relations

In order to obtain the generalized Gauss-Kummer relations
properly, we assume
@ The variables are nonnegative real numbers

@ The bases of all power factors are nonnegative real
numbers.

Corresponding to the geometric representation shown in
Fig.1(a) with {a,b} = {3,5}, {c,d, e} = {1,2,4}, we derive the
foIIowmg six solutions of the GKZ- -system presented in Eq.(2.1)
which are proportional to each other in the intersection of their
convergent regions,

219 @y~ (g~ (g~ (g~ (g~ (8. (52
{1,2,3} {1,2,5} {1,3,4} {1,4,5} {2,4,5} {2,3,4}
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V. Kummer

V. Generalized Gauss-Kummer relations

Dividing each function by a common power factor and requiring
equality to each other on the concrete principal value plane, we
obtain the generalized Gauss-Kummer relations as

(10 .
P03 B x, 5)

- -8 =By (D) * Y
=(1— (1 — 2

1=y (1—x) 59“7275}(5’ =1 oy
_ Bs=1,(5) SR
= (1 — 5

=95 e T )
_ Bs—1_(5) y oorzs
=(1-y)P —

( y) 89{2,3‘4}(57 y—l’ y_]>
=(-9'"2 a0 (g T2

: {1,4,5} 1—y

BBy _ =B ,(10) , L2
=0—-y" 17 FHBu—y Zw{z,“} B ¥, ; _X) , 63)

withx=r,/r,, y=r/r,.
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V. Kummer

V. Generalized Gauss-Kummer relations

@ The relations coincide with those equations presented in
Eq.(1),(2),(3),(4),(5) in the section 9.4 of Generalized
Hypergeometric Series by W. N. Bailey, published by
Stechert-Hafner Service Agency 1964. Where those
relations are derived through the Euler integral expression
of the first type Appell function.

@ We provide an explanation on those relations in point of
view of combinatorial geometry.

@ There are totally 60 solutions &, i = 1,3,5,8, 10, 12 which
are formulated as the first type Appell functions with
different parameters. Here 3 denotes a possible affine
spanning of the vector subspace C°.
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V. Kummer

V. Generalized Gauss-Kummer relations

@ In another group of the first type Appell functions which
correspond to same geometric representation, the
obtained Gauss-Kummer relations are various variants of
the equations presented in Eq.(5.3).

@ Corresponding to the geometric representation shown in
Fig.1(b) with a =2, {b,c} = {1,4}, and {d, e} = {3,5}, we
have the following four solutions of the GKZ-system
presented in Eq.(2.1) which are proportional to each other
in the intersection of their convergent regions,

210 (B ~e? (@ ~el® (g~ el

{1,2,3} {1,2,5} {2,3,4} {2,4,5} O 54
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V. Kummer

V. Generalized Gauss-Kummer relations

@ If the products of power factors and the hypergeometric
functions in these solutions are equal to each other on the
principal value plane, we derive the generalized

Gauss-Kummer relations as
xﬂﬁﬂs*‘&{‘l{;ﬂ ®, x, ’)

= BatBs =1 _ BB _ B ) x oy —1)
X (1 —=x) (1=v) v{l,z,s}(ﬁ’xfl’x(yfl)

y =y

=-»BT -y

(34} (<R

)

y—x 1—y

y — ) 17
R L O (- Nk Gk A1)
{2,4,5} I—x y—x

@ There is no the Euler integral representation for the Horn
series here so far, the above Gauss-Kummer relations
cannot be obtained through the method to derive that of
the first type Appell functions. The relations presented
here recover the well-known relations of the Gauss
functions in some special case. 67/96



V. Kummer

V. Generalized Gauss-Kummer relations

@ As y =0, the above equations are reduced as

Py B 5 0
- Bi+B,—1,0) X
= =TT LB — 0
=@l 4 B 00
(1 _ BB () "
=0=00TR el G B 0. (56)

@ Using 1/(a)_, = (-=1)"(1 —a),,

(1) — By, 1 =B — 8
{123}(ﬁ’x’0)72F1( %ﬁ3+}35 !

0B B (@ x

(=0T e B =0 0)
o B B, -1 Bs, 1 =B, — B,
= -0 ZFI( By + By

x )
x—1 ’

(6) _ By, 1 =8, =8
{734}(ﬁ’0’x)72F‘( : 3+;35 )
B B =1 () Xy
(I —=x)71 774 <P{745}(/5 T )
o B B, -1 Bs, 1 =B, — B, x
=1 -0 th ZFI( 3+bs —) (57)
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V. Kummer

V. Generalized Gauss-Kummer relations

The reduced relations in Eq.(5.6) coinciding with that
presented in Eq.(5.1).

There are totally 60 solutions &\, i =2,4,6,7,9, 11 which
are written as the Horn series with different parameters. In
another group of the Horn series which correspond to
same geometric representation, the obtained
Gauss-Kummer relations are various variants of the

equations presented in Eq.(5.5).

The solutions of GKZ-system in projective spaces can
obtain adjacent and inverse relations, but Gauss-Kummer
relations cannot be obtained.

69/96



VI. A simple Example

VI. The analytic expressions for 1-loop self energy

In this scheme, we obtain the analytic expressions of a
Feynman integral in its whole domain of definition through the
following steps.

@ After embedding the Feynman integral on a variety (a
special stratum) of the Grassmannian G, , (k < n), we
construct all hypergeometric solutions for the general
stratum of the Grassmannian G, , under all possible affine
spanning.

@ We derive the inverse and adjacent relations among
hypergeometric solutions under the same affine spanning,
and the Gauss-Kummer relations among hypergeometric
solutions from different affine spanning.
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ Constraining those hypergeometric solutions for the
general stratum on the special stratum through inverse and
Kummer relations, we derive the canonical series solutions
for our special stratum.

@ The various Gauss relations for the canonical series
solutions are induced by those of the general stratum.

@ In the neighborhood of the regular singularities, we write
the Feynman integral as a finite linear combinations of the
canonical series solutions for our special stratum under
same affine spanning.

@ The combination coefficients are obtained by the reduced
Gauss inverse relations among the canonical series
solutions, then the analytic expressions of the Feynman
integral are continued to its whole domain of definition.
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ The of generalized hypergeometric
functions can be used to demonstrate the equivalence of
fundamental solution systems constructed based on
different integral representations, and those relations can
rewrite the coefficients of the Laurent expansion of
Feynman integrals around D = 4 as generalized
hypergeometric functions with integer parameters.

In the example of 1-loop self energy, its Feynman integral is
embedded in the general stratum of G, ,, i.e. the determinant of
any 3 x 3 minor is non zero for the general vector

(r,, r,, 1y) € C3.
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ The exponent vector

B=Bs = 2

(6.1)

Where D is the time-space dimension in dimensional
regularization.

@ The boundary conditions:

ir@- 2y g - 1)(—;;2)%_1

. 2
A ,0,0) = —
iAygp (P ) (4m)P/20(D — 2) A]zzE

ire-2)r@ - 1)( m? )g_,

. 2 . 2y 2
iA; g (0,m”,0) = iAo (0,0,m") = (471—)1)/21“(%) AZRE s (6.2)

which are used to obtain the combinatorial coefficients.
Here A, is the renormalization scale.
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ | < m? < mi
Ay (P o)
2 2
_ (D) 2 =B, 2\—B,  2\1=B, =B, (1) rp
—C{lyz’”(ﬁ)(ml) LQmy) "207) 3 4s0{l’2,3}(ﬁy m§, e
2 2
) 2185 —1_(5) rom
T (B)(m3)"s P oy (B, mg, mi)
2
£CO (@B T ) ® (g P (63)
{1,2,3} 1 2 {1,2,33 mf m2 ’
o mz < \[)z\ < m?
Ay (7 T )
—, @)D, e B
SRR I JIEET R
+c™ (B)(mz)’Bl (p2>61+5571 (©] (B ﬁ ﬁ)
{1,2,3} 1 Clesn ™ 2 a2
1
+e® (B! TR TR ) T (s " ﬁ) (64)
{1,2,3} 1 ) P TPlhen T e :
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

o mz < m? < Pl

2 2 2
Aygp P )

2 2
—c® @) el TR e ® (s, 2, 2
{1,2,3} {1,2,3} 2’ m%
> 2
(9) 2\B3+Bs =1, 2y=B5 (9) oM
+C{|”}(ﬂ)(ml)3 5T0) 359{]1213}(,3, R m?)
2 2
(10) 2)85=1,,(10) o™
+C{l”}(ﬁ)(p) 5T {]“}(B, 2 ,,2> (6.5)
o m? < mg < P2
PR
2 2
_ (10 2985 =1,(10) o™
—C{I,m}(ﬁ)(p) {]23}(3, 2 p2)
2 2
(11) 218, +Bs— By (11) mfz 'i
+C{1”}(B)(m2)3 s 350{]“}(6 pz’m2>
2
> 2
(12) 2.1-8, -8 B 8, (12 meem
+CI,3}(B)( ) 4(m) 2077 349{]12‘3}(/3, - %> (6.6)
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

o m% < P? < mf

2 2 2
Ajgp (07 mi,m))

2 2
Y 2= By 2By +Bs—1 (4 LA
=G5y BYmy) P22 70 e 1) (B w2’ p2)
2 m?
(5) 2485 =1 ,(5) o
+C{112’3}(ﬁ)('"2) s “P{l,z,s}(ﬁ’ mg, mg)
e m
(12) 2\1=By =By (2= By (,2y— B3 ,(12) N
iy BN AT D) TR P 8 S )6

@ Using the boundary conditions in Eq.(6.2), we have

3) %) _ ry-nre-2)
c B)=c (:3)—7(4#)0/2{‘(%) ,

{1,2,3} {1,2,3}
D/2—212(D D

(10 _ (P23 —nre- 3) o5

o ® (4m)P720(D — 2) ’ €8
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ Other coefficients are linear combinations of the above
coefficients through the Gauss inverse relations.

@ In order to derive other combinatorial coefficients, we apply
the Gauss-inverse relations.

@ Performing the inverse transformation of suitable variables
in Eq.(6.3) and Eq.(6.4), for example, one gets

C(3) B) = (71)ﬂ571 F(B[ + 55 — N2 - 52 _ BS)C(S)
{1,2,3} LB )T(1 = B,) {123}
LB, + 85 — DB, + 55) c©®
D1 =By = BOT(By) {123}
LA =8 —BITC=B, = ) 5)

(8)

+H="h

B

c® = A
{1 2 z}w) (=n-" LBy + BOT(1 = By) {1,2,3} @
B8, —1 DB BT = By — B5) o)
+(=1)P3 TP T, )T = ) Crina B

(6.9)
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

°
(5) _ -8 DBy +B)0(B, + 85 — 1) 2y
B N N RIS B (R R
B 1 DBy + B — DT =B, = B5) 3
D T(B,)T(1 — £,) RIESEG
©® Bt 1 DB A BT — B, — B5)
9 B = (=1t Seora ) e ®
- D@8 =BT =8y~ B) 5 6o
+(=1) G T AT A Chan @ 610
@ thus
c©® — (- (=B = BIT(Bs) c®
B = ) e e e @
_1)PatBs F@—68 = BT~ By _54)F(ﬂ5)c(5) ;
e TBOT0 - BT, + 8y 02n P
) BB, TR By — BT = By — BIT(Bs) 3
Cliam @ =D T = B)LB)T 6, + 8y aran
fenpr LU B ZBITE) o) g ©.11)

T(B, + B)T(B, + B5 — 1) {123}
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ In a similar way, the combinatorial coefficients of

@E’Rm(ﬁ), i =4,7,9, 11 are respectively written as

@ (@) = (_1fa+Ps DO =By = BITBITQ = By = B5) (5)
{1,2,3} D(B, + B5)T(B;T(1 = By) {1,2,3}

LU =B = BITB) oy
T(B, + Bs)T(By + Bs — 1) {123}

D (@) = (—fi+Ps L2 =8, = B0 = By = BIT(Bs) 3)
12,3} T(B,)T(1 — B)T(B, + Bs) 11,23}

(2]

+(71)ﬂ2 8,

8)

0% r(;,(rﬂfir_(ﬁ?fgfi 5 @
Cigliz,z} ®) = (=" F(;1(1+_6j2:1)ﬁlf();3(5j )BS) Cf‘{“} ®)

rntytas KO BITOOTE B Pl @),
iy )= D e S i @)

Heyfatts U= B = BITC =65 = BITBS) 10) gy 612

T(8,)T(1 — B,)T(B, + B5) 01,23}
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ The combinatorial coefficients of o<{") 2.3} (B), i = 1,8, 12 are respectively written as

b @ = (it DB, + B, = DI = B)VB;) (3
2 D(1— B)T(B)D(B, + 5 — 1) {123}
1—p,—p, T8y + B, = DD = BIT(By) 5

(B)

+(=D T(1 - B,)T(8;,)T(B, + B; — 1) {1.2,3} @
DA o B:(i ;EAF)(Z@@ ERIENCE
PR REESLEE TR
+(=1)1 7t TG 52(1;34?;)(1;3(261>55 e @
r — DIl — B,)T
HEDTAT FEZ;?— ﬁ3)>r((za3 f% <—le§ Cran @
c({llzy)“} B = (-t T, :;;SI:I?F)(I;(fS;l —8,) C?l),w} ®)
HonATAT 5551 )1t<[f4—_512))rr(<]62_f4ﬁ): 83513 o @
t(oyPats =1 DB By = DDA = BOTBs) o) 5y (643

TBIT( = B;)T(By + B5 — 1) {123}
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VI. A simple Example

VI. The analytic expressions for 1-loop self energy

@ Taking the time-space dimension D =4 — 2¢ in
dimensional regularization, one finds that the ultraviolet
divergence in Eq(6.3)~EQq.(6.8) is 1/¢.

@ |t is popularly believed that the physical thresholds
obtained from Cutkosky cuts are proper subsets of the
singular locus of the Feynman integral. The dominant
contributions of the Feynman integral at the threshold are
derived by the expansion of its analytic expressions in the
limit of heavy masses and large momenta. Actually the
singular locus of a Feynman integral depends on
determinant of the resultant complex in an affine algebra,
we will release our relevant calculations elsewhere.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

Figure: 1 The 2-loop Massive Dune diagram.

The Feynman integral of the 2-loop Dune is embedded in a
special stratum of the Grassmannian G, ;.
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VII. The Dune diagram

VII. The 2-loop Masswe Dune dlagram

&= (1 |2) (7.1)
with the exponent vector s, = ©0.0,0,0,0,—p,0 —4,-1) e ¢*, and

2 2
Lopy m
1 pl2 mf

Zy=|1 p m (7.2)
1 p2 m?
3 4
¢ A* A?

For a generic stratum of the Grassmannian G, there are 56
affine spanning. In each affine spanning there are 1905 linearly
independent hypergeometric functions. In total there are
106680 hypergeometric functions in our analysis.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

The matroid &, represent a collection of eight points in the
projective space P* which has nine geometric configurations.
Those 106680 hypergeometric functions above are attributed to
nine types of hypergeometric functions which are transformed
into each other by the various Gauss relations. In addition,
those functions depend on 8 variables, the Feynman integral
depends on 6 variables! Those analytical continuations from
the inverse transformations and Kummer relations
corresponding to geometric representations can be used to
calculate the restrictions of those hypergeometric functions on
the special stratum (a hypergeometric series with 6
independent variable and a six-fold summation).
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

The indices of columns A, B, C, D, &, F, G, H belong to the set
{1,---,8} and are all distinct from each another. The geometric
configurations of the exponent matrices of hypergeometric
functions are divided into the following types.

@ The configuration |: any 2 x 2 minors of the 5 x 3 matrix
composed by the columns with the indices A, B, and C are
zero, and any 5 x 5 minors of the 5 x 6 matrix composed by
the columns with the indices A (or B, or C), D, &, F, G, and
‘H are nonzero.

HI( ,Z ‘x> -y (a,)\n\,2(ﬂ2)|n\34(ﬂ3)\ng|56(u4>\n\78(a5)\n\]357(06)\n\z468 o7
nezd, [ I, !] ()1l

i=1

here the parameter vector a € C® in the nominator, and the
parameter ¢ € C in the denominator.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The configuration Il: any 2 x 2 minors of the 5 x 2 matrix
composed by the columns with the indices A and B are
zero, any 3 x 3 minors of the 5 x 3 matrix composed by the
columns with the indices A (or B), C, and D are zero, and
the determinant of the 5 x 5 matrix composed by the
columns with the indices C, &, F, G, and H is zero.

The geometric configuration corresponds to the following
generalized hypergeometric function

H"( a,b ‘x) > (1) 11134 (@) n156 (43 0175 (4 nl 2357 (B —ny +1nls. .
c 8
pr
nezy [’l:[l”i!} (€)= +1nl3...5 (2) —ny +Inlp3s7

x (—1)lhzs7n (7.4)

where the parameter vector a € C*, the parameter b € C in the
nominator, and the parameter vector ¢ € C? in the denominator,
respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration Ill: any 2 x 2 minors of the
5 x 2 matrix composed by the columns with the indices A
and B are zero, any 4 x 4 minors of the 5 x 4 matrix
composed by the columns with the indices A (or B), C, D,
and £ are zero, and any 4 x 4 minors of the 5 x 4 matrix
composed by the columns with the indices C, F, G, and ‘H
are zero, respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

Hm( a,b ‘x) _ (@) Inlg3 (93D |56 (93 Inl7g (44 nlpy57 O) = Il 3+ Imly.. g
c 3
3
nery Ll:[l "i!] (€1) —ny+1nlgsy () = Inl 13+ Inlse7s

X(_l)\"hsu" , (7.5)

where the parameter vector a € C*, the parameter b € C in the
nominator, and the parameter vector ¢ € C? in the denominator,
respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration IV: any 2 x 2 minors of the
5 x 2 matrix composed by the columns with the indices .A
and B are zero, any 3 x 3 minors of the 5 x 3 matrix
composed by the columns with the indices C, D, and £ are
zero, and the determinant of the 5 x 5 matrix composed by
the columns with the indices A (or B), C, F, G, and H is
zero.

The geometric configuration corresponds to the following
generalized hypergeometric function

" a,b _ €@ 113 (@) 45 (93 1nl g (44D )47 (B) = In] 135+ Il
v ¢ x| =

8
8
nery [IEI "x!] (€)= +1nlage7 (2) ~Inl 135+ Inl7g

x (=17 (7.6)

where the parameter vector a € C*, the parameter b € C in the
nominator, and the parameter vector ¢ € C? in the denominator,
respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration V: any 2 x 2 minors of the
5 x 2 matrix composed by the columns with the indices A
and B are zero, any 2 x 2 minors of the 5 x 2 matrix
composed by the columns with the indices C and D are
zero, and any 5 x 5 minors of the 5 x 6 matrix composed by
the columns with the indices A (or B), C (or D), &, F, G,
and H are nonzero, respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

HV( ab x

) B (@) 1153 (43 nl 45 (43D 0] g7 (@) 0] 357 (95D [n]2465 (O) ] 1357 +1g
i’ =

8
nezf, L];[l n’,!} (€) —ny + 1112468
x (—1)lm3s7y (7.7)
where the parameter vector a € C°, the parameter b € C in the

nominator, and the parameter ¢ € C in the denominator,
respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration VI: any 2 x 2 minors of the
5 x 2 matrix composed by the columns with the indices A
and B are zero, any 3 x 3 minors of the 5 x 3 matrix
composed by the columns with the indices A (or B), C and
D are zero, and the determinant of the 5 x 5 matrix
composed by the columns with the indices A (or B), &, F,
G, and H is zero, respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

x) -y (al)‘71‘12(az)‘n‘34<“3)8|n‘56(a4)‘n|78(a5>‘n‘1468(b)f‘nhz+|n|357
nezd, [‘1‘[1 n’.!} (©) iy lnls..g

i=

a,b
HVI( "

x(=1)"x" (7.8)

where the parameter vector a € C° in the nominator, and the
parameter ¢ € C in the denominator, respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration VII: any 3 x 3 minors of the
5 x 3 matrix composed by the columns with the indices A,
B, and C are zero, any 3 x 3 minors of the 5 x 3 matrix
composed by the columns with the indices C, D, and £ are
zero, and any 4 x 4 minors of the 5 x 4 matrix composed by
the columns with the indices D, F, G, and H are zero,
respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

o a,b _ (“1)\'!\12(a2>\"\56<“3)|"\78<bl)*\"\12+\“|457(bz)*\"\23+|n\4,.,3
vii x) = 5
8 . .
nery [il;llni!} (1) Inlig3+Inlasy (©2) = Inlo3+1nl g7

x (=l (7.9)

where the parameter vectors a € C*, b € C? in the nominator,
and the parameter ¢ € C? in the denominator, respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration VIII: any 3 x 3 minors of the
5 x 3 matrix composed by the columns with the indices A,
B, and C are zero, any 3 x 3 minors of the 5 x 3 matrix
composed by the columns with the indices D, £, and F are
zero, and any 4 x 4 minors of the 5 x 4 matrix composed by
the columns with the indices C, D, G, and H are zero,
respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

va( ab ‘x) _ (@) n1y5 (9 1nlas (93D tnlzg B1) = nl 1o+ kg7 (P2) = nlags +Inlers
8 ' .
neLy [,E] "i!] (1) =l 123+ Inl4g7 (€2) = Inlass+1nlg
x (—1)lM237,m (7.10)

where the parameter vectors a € C*, b € C? in the nominator,
and the parameter ¢ € C? in the denominator, respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ The geometric configuration IX: any 2 x 2 minors of the
5 x 2 matrix composed by the columns with the indices D,
and & are zero, any 4 x 4 minors of the 5 x 4 matrix
composed by the columns with the indices A, B, C, and D
(or &) are zero, and any 4 x 4 minors of the 5 x 4 matrix
composed by the columns with the indices D (or &), F, G,
and H are zero, respectively.

The geometric configuration corresponds to the following
generalized hypergeometric function

a,b
Hix (

c

x) > (@) 10112 (@) 0134 (@3 1) 56 (@4 1] 26 (@5 ) n] 365 (B) — 1l 1234 + 157

8
8 |
n€Zl [,1;11 "i'} () = Inlpg+1nl 567

x(—n)lthagr (7.11)
where the parameter vector a € C°, the parameter b € C in the

nominator, and the parameter ¢ € C in the denominator,
respectively.
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ Under the inverse transformation, the image function is

some linear combination of these nine hypergeometric
functions.

HII( a;b X)
(e )T (c,)T(ay — b)T(ay, —b) _,

T(ay)T(a,)T(e, — DT (c, —b) 7

(ay,ay,1 —¢c; +b,1—c, +b),b
XHH( (1—ay +b,1—a, +b)

(e )l (e, (ay — a,)T(b —ay) T
T(ay)T(5)T(¢; —a,)T(c, 7514)

(ay,ay, o taa)l—c +a
XHIV( (l—a +a4,l—b+a4)

(e )T (ey)T(ay —a%)I‘(b—a;) —ay
'(a,)T(B)T(c; —ay)T(c, 7413)

1 S _
XHVII( (ay,0ay,a), (1 +ay; —c,,a,

(7] — u3

1
— XXy, X 6,«(3,'*4)) (7.12)
7
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VII. The Dune diagram

VII. The 2-loop Massive Dune diagram

@ With the geometric representations of those
hypergeometric functions, we obtain the generalized
Gauss-Kummer relations.

@ With those Gauss relations, we can reduce these eight-fold
summation hypergeometric series to six-fold summation
hypergeometric series for the 2-loop Dune diagram, and
reduce these eight-fold summation hypergeometric series
to four-fold summation hypergeometric series for the 2-loop
self-energy with 4 propagators, respectively.

95/96



VIIl. Summary

VIII. Summary

@ In this approach, one topological diagram corresponds to
one set of hypergeometric solutions. We make the
classification among those hypergeometric solutions by the
geometric configurations at first, make the classification
further by the geometric representations, then make the
classification by the affine spanning finally.

@ GKZ-systems of Grassmannians give the analytic
expressions of Feynman integrals in whole domain of
definition. For example, 2-loop 4-propagator and 2-loop
5-propagator self-energies.
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