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General Formulation:
Grand Partition Function with a Macroscopic Angular Momentum

𝒬 = Tr𝑒−
1
𝑇 𝐻−𝜔𝐽𝑧  𝐻, 𝐽𝑧 = 0

Gibbs Free Energy
ℱ = −𝑇 ln 𝒬

Canonical quantization in 𝐴0 = 0 gauge

𝐻 =
1

2
න 𝑑3 Ԧ𝑥 Π𝑙 ∙ Π𝑙 + 𝐵𝑙 ∙ 𝐵𝑙 = න 𝑑3 Ԧ𝑥 ℋ

𝐵𝑙 = ∇ × Ԧ𝐴𝑙 +
1

2
𝑔𝑓𝑙𝑎𝑏 Ԧ𝐴𝑎 × Ԧ𝐴𝑏

Π𝑖
𝑎 Ԧ𝑥 , 𝐴𝑗

𝑏 Ԧ𝑥′ = −𝑖𝛿𝑎𝑏𝛿𝑖𝑗𝛿3 Ԧ𝑥 − Ԧ𝑥′

Physical state
∇ ∙ Π𝑙 + 𝑔𝑓𝑙𝑎𝑏 Ԧ𝐴𝑎 ∙ Π𝑏 | ۧ = 0

Angular momentum

Ԧ𝐽 = න 𝑑3 Ԧ𝑥 Ԧ𝑥 × 𝐵𝑙 × Π𝑙
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Toward Path integral formulation:
ሶԦ𝐴𝑙 =

𝜕ℋ

𝜕Π𝑙
= Π𝑙 + 𝜔 Ԧ𝑥 ∙ 𝐵𝑙 Ƹ𝑧 − Ƹ𝑧 ∙ 𝐵𝑙 𝑥

Lagrangian density

ℒ = Π𝑙 ∙
ሶԦ𝐴𝑙 − ℋ = −

1

4
𝐹𝜇𝜈 𝑙 𝐹𝜇𝜈

𝑙

=
1

2
𝐹𝑡𝑥

𝑙 𝐹𝑡𝑥
𝑙 + 𝐹𝑡𝑦

𝑙 𝐹𝑡𝑦
𝑙 + 𝐹𝑡𝑧

𝑙 𝐹𝑡𝑧
𝑙 −

1

2
1 − 𝜔2𝑟2 𝐹𝑥𝑦

𝑙 𝐹𝑥𝑦
𝑙

−
1

2
1 − 𝜔2𝑥2 𝐹𝑦𝑧

𝑙 𝐹𝑦𝑧
𝑙 −

1

2
1 − 𝜔2𝑦2 𝐹𝑧𝑥

𝑙 𝐹𝑧𝑥
𝑙  

 +𝜔 𝑥𝐹𝑥𝑦
𝑙 𝐹𝑡𝑥

𝑙 + 𝑦𝐹𝑥𝑦
𝑙 𝐹𝑡𝑦

𝑙 − 𝑥𝐹𝑦𝑧
𝑙 𝐹𝑡𝑧

𝑙 − 𝑦𝐹𝑧𝑥
𝑙 𝐹𝑡𝑧

𝑙 + 𝜔2𝑥𝑦𝐹𝑦𝑧
𝑙 𝐹𝑧𝑥

𝑙

𝑟2 = 𝑥2 + 𝑦2

𝐹𝜇𝜈
𝑙 = 𝜕𝜇𝐴𝜈

𝑙 − 𝜕𝜈𝐴𝜇
𝑙 + 𝑔𝑓𝑙𝑎𝑏𝐴𝜇

𝑎𝐴𝜈
𝑏 𝐴0

𝑙 = 0

 Nonzero 𝐴0
𝑙  can be restored when transformed to other gauges, e.g. covariant

               gauge 
               𝓛 = the Lagrangian density in a global rotating frame with angular velocity 𝝎.

𝑑𝑠2 = −1 + 𝜔2𝑟2 𝑑𝑡2 + 𝜔 𝑥𝑑𝑦 − 𝑦𝑑𝑥 𝑑𝑡 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2
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Thermal Ensemble:
𝑡 → −𝑖𝑡 𝐹𝑡𝑗

𝑙 → 𝑖𝐹𝑡𝑗
𝑙

𝐴𝜇
𝑙 𝑡 +

1

𝑇
, Ԧ𝑥 = 𝐴𝜇

𝑙 𝑡, Ԧ𝑥

𝒮𝐺 ≡ න

𝑆1×𝑅3

𝑑4𝑥 ℒ → 𝑖𝒮𝐺

𝒬 = const. න 𝑑𝐴 𝑒−𝒮𝐺+gauge fixing terms
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Lattice version of 𝓢𝑮 (Yamamoto & Hirono, 2013, Braguta et. al., 2021)

Formulated on a lattice of 𝑁𝑡 × 𝑁𝑠
3 sites

𝒬 = න ෑ

𝑥,𝜇

𝑑𝑈𝜇 𝑥 𝑒−𝒮𝐺

ℱ = −𝑇 ln 𝒬  𝑇 =
1

𝑁𝑡𝑎
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𝑈𝜇𝜈 = 𝑉𝜇𝜌𝜈 =
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Deconfinement Phase Transition:
After integrating all spatial links

𝑒−
1
𝑇ℱ = න ෑ

Ԧ𝑥

𝑑𝑊 Ԧ𝑥 𝑑𝑊∗ Ԧ𝑥 𝑒−𝒮𝑒𝑓𝑓. 𝑊,𝑇,𝜔

 −−−− Polyakov loop 𝑊 Ԧ𝑥 = tr ෑ

𝑡

𝑈0 Ԧ𝑥, 𝑡

                                          −−− − 𝒮eff. 𝑊, 𝑇  is invariant under 𝑍𝑁𝑐
 rotation of 𝑊.

Mean-field theory of the deconfinement transition:
• Saddle point approximation:

ℱ = 𝑇𝒮eff. 𝒲, 𝑇, 𝜔
     where 𝒲 = the global minimum of 𝒮eff. 𝒲, 𝑇, 𝜔
• 𝒮eff. 𝑊, 𝑇  has two local minima: 𝒲 = 0, 𝑍𝑁𝑐

 invariant, confinement;
                                                                           𝒲 ≠ 0, 𝑍𝑁𝑐

 breaking, deconfinement.
• Deconfinement transition occurs when the two local minima are degenerate

𝝏𝓕

𝝏𝓦 𝒙
𝑻,𝝎

= 𝟎 𝓕 𝓦, 𝑻, 𝝎 = 𝓕 𝟎, 𝑻, 𝝎
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Shift of the Deconfinement Temperature for Low Angular Velocity 𝝎:
• Following Braguta et. al. assuming a cylindrical volume around the rotation axis
      of radius R.
• Expand the effective action to the order 𝜔2

ℱ 𝒲, 𝑇, 𝜔 = ℱ 𝒲, 𝑇 −
1

2
𝜔2𝐼 𝒲, 𝑇

      
• Expand 𝒲, and 𝑇 in the neighborhood of the transition at 𝜔 = 0

𝒲 = 𝒲0 + 𝛿𝒲 𝑇𝑑 = 𝑇𝑑
0

+ 𝛿𝑇
• Re-balancing the deconfinement transition condition

𝑻𝒅 − 𝑻𝒅
𝟎

𝑻𝒅
𝟎

= −
∆𝑰

𝟐𝑳
𝝎𝟐 = 𝑩𝒗𝟐 

    where  ∆𝐼 = jump of the moment of inertial at the transition when 𝜔 = 0  
                    𝐿 = latent heat at the transition when 𝜔 = 0

∆𝐼 = 𝐼 𝒲0, 𝑇𝑑
0

− 𝐼 0, 𝑇𝑑
0

𝐿 = 𝑇𝑑
0

𝑆 𝒲0, 𝑇𝑑
0

− 𝑆 0, 𝑇𝑑
0

Moment of inertial
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Strong coupling expansion of SU(3) at 𝜔 = 0 (M. Gross, et. al. 1983)
      For a homogeneous 𝑊

𝑆eff.
0

𝑊, 𝑇 = −
1

2
ln 27 − 18 𝑊 2 + Re 𝑊3 − 𝑊 4 − 3𝜆 𝑊 2

𝜆 = 2 3𝑔2 −𝑁𝑡 = 2𝑒−
𝜎𝑎
𝑇

      String tension in strong coupling

𝜎 =
1

𝑎2
ln 3𝑔2

      𝜎 = 440MeV 2, 𝑎−1 = 228MeV (Braguta, et. al.)
      𝑍3 − breaking minimum:

𝑊 = 𝒲0 = 1 + 4 −
1

3𝜆

      becomes degenerate with the symmetric minimum, 𝑊 = 0 at 
𝜆 ≅ 0.086 ⟹  𝑇𝑑

0
= 270MeV
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Technical background:
• Strong coupling expansion
     ----  𝑁𝑡 − th power of the lattice action 𝒮𝐺

𝑁𝑡

     ----  The terms 𝒮𝐺
𝑁𝑡  covering each of 𝑈0 Ԧ𝑥, 𝑡  once

---- Integration by theorem of orthogonality
𝑡

• Haar measure transformation
𝑉𝑈𝑉† = diag. 𝑒𝑖𝛼 , 𝑒𝑖𝛽 , 𝑒𝑖𝛾  𝑊 = 𝑒𝑖𝛼 + 𝑒𝑖𝛽 + 𝑒𝑖𝛾

න 𝑑𝑈 𝑓 𝑊, 𝑊∗ = const. න 𝑑𝛼𝑑𝛽𝑑𝛾 𝒥 𝛼, 𝛽, 𝛾 𝛿 𝛼 + 𝛽 + 𝛾 𝑓 𝑊, 𝑊∗

= const. න 𝑑𝑊 𝑑𝑊∗ 27 − 18 𝑊 2 + 8Re 𝑊3 − 𝑊 4 1/2𝑓 𝑊, 𝑊∗
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Order 𝜔2 correction:

• 𝐸0
𝑁𝑡  already contributed to leading order. 𝐸0

𝑁𝑡−2
𝐸2

2 contributes to the 
leading order of corrections.

• An adjacent pair of 𝑈’s is replaced by a pair of 𝑉’s.
𝒮eff. = 𝒮eff.

0
+ 𝒮eff.

1
+ ⋯ 𝒮eff.

1
= 𝑂 𝜔2

• Inhomogeneity does not contribute to this order. 11



𝑡

න 𝑑𝑈𝑎𝑏𝑑𝑈𝑏𝑐𝑑𝑈𝑐𝑑 tr𝑈𝐴𝑈𝑎𝑏𝑈𝑏𝑐𝑈𝑐𝑑 tr𝑈𝑐𝑑
† 𝑈𝑏𝑐

† 𝑈𝑎𝑏
† 𝑈𝐵 =

1

3
tr𝑈𝐴𝑈𝐵

⟹  𝒮eff.
1

Technical details
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Result of order 𝜔2 correction:
Assuming the open boundary condition of Braguta et. al.

𝒮eff.
1

≅ −
1

4
𝜆𝑣2𝒩𝑁𝑡𝑊∗𝑊

                                         where 𝒩 = number of lattice sites within the cylinder
The jump of the moment of inertia at the transition 𝑇 = 𝑇𝑑

(0)

∆𝐼 = 𝐼 𝒲0 𝑇𝑑
0

, 𝑇 0 − 𝐼 0, 𝑇 0 =
1

2
𝒩𝑁𝑡𝜆0𝑅2 𝒲0 𝑇0

0
2

Together with the latent heat at the transition

𝐿 = 3𝜆0𝒩𝜎𝑎 𝒲0 𝑇0
0

2
> 0

𝐵 =
𝑇𝑑 − 𝑇𝑑

0

𝑇𝑑
0

𝑣2
= −

1

12𝜎𝑎2
≅ −0.02235

In contrast to the lattice simulation by Braguta et. al.   𝐵 = 0.7 (arXiv:2102.05084) 
The same behavior was also obtained by Fukushima & Shimada  (arXiv:2506.03560).
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𝜔2-Correction to string tension
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Summary and Outlook:
• A systematic approximation from the first principle.
• If lattice result is robust, the discrepancy maybe caused by
     ---- The order of strong coupling expansion is not enough to capture the physics
             within the critical window.
     ---- While the physics in the critical window is universal, the lattice formulation can 
             be different and there maybe a lattice formulation that capture critical behavior 
             better.    
• From large 𝑁𝑐  perspective, the extensive thermodynamic quantities carry 𝑁𝑐

2.
     ---- If the moment of inertia is positive, ∆𝐼 > 0 at the transition and the
             deconfinement temperature decreases with the angular velocity.
     ---- The moment of inertia

𝐼 =
1

𝑇
𝐽𝑧 − 𝐽𝑧

2
> 0 𝑂 =

Tr𝑒−
1
𝑇𝐻𝑂

Tr𝑒−
1
𝑇𝐻

     ---- Our result is consistent with most of holographic calculations (X. Chen, et. al.
            arXiv: 2010.14478).
            and AdS/QCD assumes large 𝑁𝑐.
     ---- Is 𝑁𝑐 = 3 sufficiently large?
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