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Boundaries of nuclear matter

QGP
Qo:G‘ /Cri““" point e The hot boundary: T > pu.
\9@\ The cold boundary: T < p.
T |nattice QCD ~—— first order e The system may be simplified in such
hadron gas limits.
e Understanding physics at boundaries can
e provide constrains to the bulk.
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The physics at the two extremes

Hot QCD Matter Cold Dense Matter
e Temperature dominated: T > pu. e Chemical potential dominated: T < u
e Hot hadron gas, quark-gluon e Degenerate fermions: nucleons, quarks. Effective
plasma. dof lives on the boundary of the Fermi surface.
e Well-established frameworks. e Fermi liquid, non-fermi liquid?
e Collective flow, jet quenching e Phenomena in low/intermediate collisions.



The picture of degenerate fermion system

e The formation of a fermi

-0 surface at T = 0.
1 —_—T =
T =005 e Finite-temperature effect,
075 | introduce the divisiveness of
fan the fermi-surface. Allows
< 05 | collisions and introduce
dissipation.
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Quasi-particle dispersion relation
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e Mean field interactions are absorbed
into quasi-particles

° Eg — p2 + m*2

o m* = m*(u*).

o 1* = ;1 — “mean field effect”.



Excitations at zero temperature

A distortion of the shape of the Fermi surface. vV An illustration from L. V. Delacretaz, Y.-H.
Du, U. Mehta, D. T. Son, Phys. Rev. Research 4, 033131 (2022)
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U(t + Ar) = exp[—¢(t + AD)]

At T =0, all shape fluctuations are long-lived 6n(2) =", aim Yim(€2). At finite temperature,
only energy and momentum / = 0,1 are still conserved.



Long wave length excitations at finite temperature

e Ground state: at each
location X, there is a fermi

sphere with the given fermi
energy, or the chemical

potential.

y
Q Q Q Q Q e Localized collisions can

only happen near the

fermi-surface. For a sharp
fermi surface, this is no

collision.




Long wave length excitations

e Perturbation type I: a

change in the chemical
Q Q Q Q Q potential over space-time.
e The fermi surface still
y Q Q Q Q remains sharp. Such a
perturbative does not come
Q with dissipation!
X




Boltzmann equation and it relaxation time approximation

(gt + V,E,Vy — VXEPVX> f(t, x, p) = CI[f]

Collision term

1 B
C[f] =3E /d¢273,4(277)45(4)(l31 + P2 — p3 — pa)[Mia—34/?
1

A\ iy {AA(1 - B)(1 - ) - Af(1 - A)(1 - £))

N\ - - o Collision can only happen near the fermi-surface. The available
N - phase space dies off as T2.



Linearized collision operator

Linearized collision operator: f = f.q + 6f. Because most of the variation comes from the dof
near the fermi surface, 6f should be dominated by a delta function near the surface

6(E —p) =—dO(n—E)/dn
of
of = _%ﬁb - ﬂfeq(l - feq)ﬁb
The linearized collision operator is integral operator over ¢
/ 1 4504 T
C'[of] =36 d®;34(27)* 0" (p1 + p2 — P3 — pa)|Mi2—34]

fifb(1 — f)(1 —f2) {¢1 + 2 — ¢p3 — ¢a}

Note that by symmetry in the local rest frame, if $(E) = a+ bE, the collision operator always

vanishes.
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The generalized relaxation time approximation

Separate the off-equilibrium correction from the local equilibrium f = f.; + df, and solve the
linearized Boltzmann equation

S talp (001 () = g1+ Vo5V = V5V ) il (61,47 (4)

= C'[6f]
When inverting the linearized collision operator, there are ambiguities from due to conservation
laws C'[a+ bE] =0

¢! [jtfeq(t,x,p)] = 6f — 88:* x (A+ BE)

The relaxation time approximation states that €'~ [...] & 71 X (...)
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Gradient expansion of the off-equilibrium effects

The most general solution to the §f correction under RTA:

of
- *ﬂ XUV _ . . _ *
(5f—au*{p P O b1 — 9 - u(hr — a— bE )},
Shverare Bulk
_Trel
d)l(p) 72E; )

¢2(p) =;§3 {(p* u)’ [1 3 (1 B ';n Zr:ﬂ R (m*)z} '

The mean field effect enters in two ways:

e The mean-field mass and chemical potential: m*, u*.

e The mass dependence on chemical potential x* = dm*/du*

12



Expression for the shear and bulk viscosity

Matching this result to the hydrodynamic description

*
STH :/” P 5 = not” — (g — uhu”)d - u
The expressions for shear and bulk viscosity are
2 d®p Of, 2 P
772*/ P qu)E* p*7@1 )
15 ) (27)3 ap* E; 15 \ E;

1 dp@feqp n_1/p .

At this point 17 > 0, but ( is not yet manifestly positive definite.
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Landau Matching Condition and Positivity of (

The arbitrariness in a and b are fixed by the Landau matching conditions

de o< (E;, ¢ —a—bE;) =0,
dnoc(l,¢a—a—bE,)=0.

This way, the bulk viscosity can be shown to be positive definite

1 p2 1 7-relp2 ’ /

== (| = — a— bE* = _ — bE — 53— bE*

C 3 <E;;7 ¢2 a > Trel < 3E;; a ) ¢2 a
1

= (¢ —a— bE*, ¢y — a— bE) > 0.

Trel
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Low temperature expansion

At low temperature, use the Sommerfeld expansion

lo’s} 1 u
Aol T <) = € = E) = 1 |1= s | 26t (" = )+ O )

n=1
This result Compare to results from R. Hakim
7 1 (p2)° and L. Mornas PRC47(1993)2846,
o = 30.2 E(1+0(T%/u?)) expanded at T < p and pr > M.
3¢ 8w m*tprTH ) o n 1 (o)
=———14+0(T = F
Trel 135 u*s ( (T°/k7) Trel 3072 PF
e At leading order in T/u, they only depends on m* 3¢ 8w mtu T
and p*, but not K* = dm™*/dp*. e ETB
N
s () < () -
n PE w Note that they do agree since pr ~

in this limit.
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Put in actually physics: th

Lw = Z On (i — mn + 8,0 — gutp + 11870) UN

N=n,p

Nucleon fields
1 1 1
+§ (audaua — m(2702) I gme (g00)3 + ZC (g00)4

o meson field with self interaction

1 1
—ZFILVFMV + Emiwltwu

w meson fields

e o meson: long-range attraction between nucleons. ¢ meson condensation corrects the
quasi-particle mass in the mean field level.

e w meson: short-range repulsion. w meson condensation corrects the chemical potential.
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Walecka model: thermal dynamics

Thermal dynamics at the mean-field level 0 =5 4 (0 — 7), w = 0 + (w — @).

V( T7MN; 5,(:)) = —|nTre™ foﬁ LedT

e Extrema conditions (Gap equations)

oy _ . ou ok
% m25 + 00 |,_5 2g5n0(T, pg, my) =0
ov

% = mi& —2g,ns(T,pug,my)=0
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Static properties

o6 ~ T T T T T T T T T
z 0.5 —
g
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Mp/mN

Note the turning point in the relation between my, and p*. We

use this as the point of the region of validity of the theory.
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Walecka model: estimating the relaxation time

Scatterings are mediated by the residue quantum fluctuations dw and do around the mean
field. Relaxation time scales as ujg/T2.
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Results for shear and bulk viscosity
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Conclusion and prospective

Revisit the derivation of shear and bulk viscosity of cold nuclear matter with mean field
effects under the RTA approximation of Boltzmann equation.

Results suitable for T < p and pg < my.

4
<~ ()
e When using the Walecka model:

e Range of validity also limited by the non-monotonic relation between p* and m™.

e Future: improve with non-linear w potential and w-o coupling.
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Questions?



