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Boundaries of nuclear matter

• The hot boundary: T ≫ µ.

The cold boundary: T ≪ µ.

• The system may be simplified in such

limits.

• Understanding physics at boundaries can

provide constrains to the bulk.
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The physics at the two extremes

Hot QCD Matter

• Temperature dominated: T ≫ µ.

• Hot hadron gas, quark-gluon

plasma.

• Well-established frameworks.

• Collective flow, jet quenching

Cold Dense Matter

• Chemical potential dominated: T ≪ µ

• Degenerate fermions: nucleons, quarks. Effective

dof lives on the boundary of the Fermi surface.

• Fermi liquid, non-fermi liquid?

• Phenomena in low/intermediate collisions.
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The picture of degenerate fermion system
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• The formation of a fermi

surface at T = 0.

• Finite-temperature effect,

introduce the divisiveness of

the fermi-surface. Allows

collisions and introduce

dissipation.
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Quasi-particle dispersion relation
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• Mean field interactions are absorbed

into quasi-particles

• E 2
p = p2 +m∗2

• m∗ = m∗(µ∗).

• µ∗ = µ− “mean field effect′′.
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Excitations at zero temperature

A distortion of the shape of the Fermi surface. ▽ An illustration from L. V. Delacretaz, Y.-H.

Du, U. Mehta, D. T. Son, Phys. Rev. Research 4, 033131 (2022)

At T = 0, all shape fluctuations are long-lived δn(Ω) =
∑

lm almYlm(Ω). At finite temperature,

only energy and momentum l = 0, 1 are still conserved.
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Long wave length excitations at finite temperature

x

y

• Ground state: at each

location x⃗ , there is a fermi

sphere with the given fermi

energy, or the chemical

potential.

• Localized collisions can

only happen near the

fermi-surface. For a sharp

fermi surface, this is no

collision.
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Long wave length excitations

x

y

• Perturbation type I: a

change in the chemical

potential over space-time.

• The fermi surface still

remains sharp. Such a

perturbative does not come

with dissipation!
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Boltzmann equation and it relaxation time approximation

(
∂

∂t
+∇pEp∇x −∇xEp∇x

)
f (t, x , p) = C[f ]

Collision term

C[f ] = 1

2E1

∫
dΦ2,3,4(2π)

4δ(4)(p1 + p2 − p3 − p4)|M12→34|2

{f1f2(1− f3)(1− f4)− f3f4(1− f1)(1− f2)}

Collision can only happen near the fermi-surface. The available

phase space dies off as T 2.
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Linearized collision operator

Linearized collision operator: f = feq + δf . Because most of the variation comes from the dof

near the fermi surface, δf should be dominated by a delta function near the surface

δ(E − µ) = −dΘ(µ− E )/dµ

δf = − ∂f
∂µ

ϕ = βfeq(1− feq)ϕ

The linearized collision operator is integral operator over ϕ

C′[δf ] =
1

2E1

∫
dΦ2,3,4(2π)

4δ(4)(p1 + p2 − p3 − p4)|M12→34|2

f1f2(1− f3)(1− f4) {ϕ1 + ϕ2 − ϕ3 − ϕ4}

Note that by symmetry in the local rest frame, if ϕ(E ) = a+ bE , the collision operator always

vanishes.
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The generalized relaxation time approximation

Separate the off-equilibrium correction from the local equilibrium f = feq + δf , and solve the

linearized Boltzmann equation

d

dt
feq(p

∗(x), µ∗(x)) ≡
(
∂

∂t
+∇pE

∗
p∇x −∇xE

∗
p∇x

)
feq(p

∗(x), µ∗(x))

= C′[δf ]

When inverting the linearized collision operator, there are ambiguities from due to conservation

laws C′[a+ bE ] = 0

C′−1
[
d

dt
feq(t, x , p)

]
= δf − ∂f

∂µ∗ × (A+ BE )

The relaxation time approximation states that C′−1 [...] ≈ τrel × (...)
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Gradient expansion of the off-equilibrium effects

The most general solution to the δf correction under RTA:

δf =
∂f

∂µ∗

{
p∗µp∗ν σµν︸︷︷︸

Shear

ϕ1 − ∂ · u︸︷︷︸
Bulk

(ϕ2 − a− bE∗)
}
,

ϕ1(p) =
τrel
2E∗

p

,

ϕ2(p) =
τrel
3E∗

p

{
(p∗ · u)2

[
1− 3c2s

(
1− m∗

µ∗
dm∗

dµ∗

)]
− (m∗)2

}
.

The mean field effect enters in two ways:

• The mean-field mass and chemical potential: m∗, µ∗.

• The mass dependence on chemical potential κ∗ = dm∗/dµ∗
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Expression for the shear and bulk viscosity

Matching this result to the hydrodynamic description

δTµν =

∫
p∗µp∗ν

E∗ δf ≡ ησµν − ζ(gµν − uµuν)∂ · u

The expressions for shear and bulk viscosity are

η =
2

15

∫
d3p

(2π)3
∂feq
∂µ∗

p4

E∗
p

ϕ1 ≡
2

15

〈
p4

E∗
p

, ϕ1

〉
,

ζ =
1

3

∫
d3p

(2π)3
∂feq
∂µ∗

p2

E∗
p

(ϕ2 − a− bE∗) ≡ 1

3

〈
p2

E∗
p

, ϕ2 − a− bE∗
〉
.

At this point η > 0, but ζ is not yet manifestly positive definite.
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Landau Matching Condition and Positivity of ζ

The arbitrariness in a and b are fixed by the Landau matching conditions

δϵ ∝ ⟨E∗
p , ϕ2 − a− bE∗

p ⟩ = 0 ,

δn ∝ ⟨1, ϕ2 − a− bE∗
p ⟩ = 0 .

This way, the bulk viscosity can be shown to be positive definite

ζ =
1

3

〈
p2

E∗
p

, ϕ2 − a− bE∗
〉

=
1

τrel

〈
τrelp2

3E∗
p

− a′ − b′E , ϕ2 − a− bE∗
〉

=
1

τrel
⟨ϕ2 − a− bE∗, ϕ2 − a− bE∗⟩ ≥ 0 .
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Low temperature expansion

At low temperature, use the Sommerfeld expansion

feq(T ≪ µ∗) = Θ(µ∗ − E∗)−
∞∑
n=1

[
1− 1

22n−1

]
2ζ2nδ

(2n−1)(E∗ − µ∗) +O(e−
µ∗
T )

This result

η

τrel
=

1

30π2

(p∗F )
5

µ∗ (1 +O(T 2/µ2))

3ζ

τrel
=

8π2

135

m∗4p∗FT
4

µ∗5 (1 +O(T 2/µ2))

• At leading order in T/µ, they only depends on m∗

and µ∗, but not κ∗ = dm∗/dµ∗.

• ζ
η ∝

(
T
p∗
F

)4

×
(

m∗

µ∗

)4

Compare to results from R. Hakim

and L. Mornas PRC47(1993)2846,

expanded at T ≪ µ and pF ≫ M.

η

τrel
=

1

30π2

(µ∗
F )

5

p∗F

3ζ

τrel
=

8π2

135

m∗4µ∗T 4

p∗F
5

Note that they do agree since pF ≈ µ

in this limit.
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Put in actually physics: the Walecka model

LW =
∑

N=n,p

ψ̄N

(
i /∂ −mN + gσσ − gω /ω + µBγ0

)
ψN︸ ︷︷ ︸

Nucleon fields

+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
+

1

3
bmN (gσσ)

3 +
1

4
c (gσσ)

4︸ ︷︷ ︸
σ meson field with self interaction

−1

4
FµνFµν +

1

2
m2

ωω
µωµ︸ ︷︷ ︸

ω meson fields

• σ meson: long-range attraction between nucleons. σ meson condensation corrects the

quasi-particle mass in the mean field level.

• ω meson: short-range repulsion. ω meson condensation corrects the chemical potential.
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Walecka model: thermal dynamics

Thermal dynamics at the mean-field level σ = σ̄ + (σ − σ̄), ω = ω̄ + (ω − ω̄).

V(T , µN ; σ̄, ω̄) = − lnTre−
∫ β
0

LEdτ

• Extrema conditions (Gap equations)

∂V
∂σ̄

= m2
σσ̄ +

∂U

∂σ

∣∣∣∣
σ=σ̄

− 2gσn0(T , µ
∗
B ,m

∗
N) = 0

∂V
∂ω̄

= m2
ωσ̄ − 2gωns(T , µ

∗
B ,m

∗
N) = 0
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Static properties
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Note the turning point in the relation between m∗
N and µ∗. We

use this as the point of the region of validity of the theory.
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Walecka model: estimating the relaxation time

Scatterings are mediated by the residue quantum fluctuations δω and δσ around the mean

field. Relaxation time scales as µ∗
B/T

2.

1.5 2.0 2.5

1
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4

μB
* /mN

*

τ
re
l

-
1
μ
B*

(π
T
)2

M-C

Fitting

iMσ,t̃ =

ua ub

ūc ūd

pa

pc

pb

pd

δσ
iMσ,ũ =

ua ub

ūc ūd

pa

pd

pb

pc

δσ

iMω,t̃ =

ua ub

ūc ūd

pa

pc

pb

pd

δω
γµ γν iMω,ũ =

ua ub

ūc ūd

pa

pd

pb

pc

δω
γµ γν
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Results for shear and bulk viscosity
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Use the dimensionless ratio to estimate the

ideal-ness of hydrodynamic:
ηp∗

F

e+P and
ζp∗

F

e+P

ζ

η
∼

(
T

p∗F

)4

×
(
m∗

µ∗

)4

≪ 1

20



Conclusion and prospective

• Revisit the derivation of shear and bulk viscosity of cold nuclear matter with mean field

effects under the RTA approximation of Boltzmann equation.

• Results suitable for T ≪ µ and pF ≲ mN .

• ζ/η ∼
(

T
p∗
F

)4

×
(

m∗

µ∗

)4

• When using the Walecka model:

• Range of validity also limited by the non-monotonic relation between µ∗ and m∗.

• Future: improve with non-linear ω potential and ω-σ coupling.
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Questions?
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