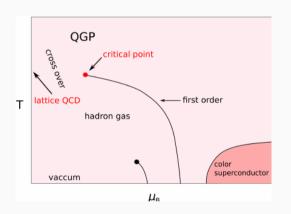
Viscosity of Dense and Cold Nuclear Matter

The 2nd International Workshop on Physics at High Baryon Density (PHD2025), October 18, 2025, Wuhan

Jianing Li, Weiyao Ke, Jin Hu

Based on Jianing Li, WK, PRC111(2025)044904, Jianing Li, WK, Jin Hu, in preparation.

Boundaries of nuclear matter



- The hot boundary: $T \gg \mu$. The cold boundary: $T \ll \mu$.
- The system may be simplified in such limits.
- Understanding physics at boundaries can provide constrains to the bulk.

The physics at the two extremes

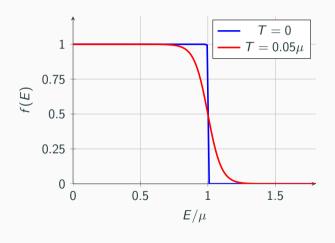
Hot QCD Matter

- Temperature dominated: $T \gg \mu$.
- Hot hadron gas, quark-gluon plasma.
- Well-established frameworks.
- Collective flow, jet quenching

Cold Dense Matter

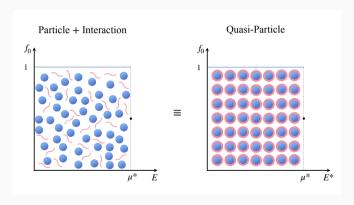
- Chemical potential dominated: $T \ll \mu$
- Degenerate fermions: nucleons, quarks. Effective dof lives on the boundary of the Fermi surface.
- Fermi liquid, non-fermi liquid?
- Phenomena in low/intermediate collisions.

The picture of degenerate fermion system



- The formation of a fermi surface at T = 0.
- Finite-temperature effect, introduce the divisiveness of the fermi-surface. Allows collisions and introduce dissipation.

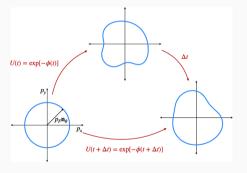
Quasi-particle dispersion relation



- Mean field interactions are absorbed into quasi-particles
- $E_p^2 = p^2 + m^{*2}$
- $m^* = m^*(\mu^*)$.
- $\mu^* = \mu$ "mean field effect".

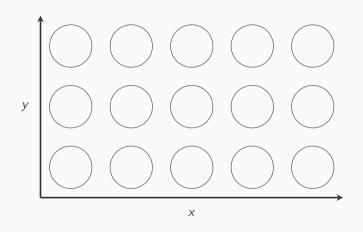
Excitations at zero temperature

A distortion of the shape of the Fermi surface. ∇ An illustration from L. V. Delacretaz, Y.-H. Du, U. Mehta, D. T. Son, Phys. Rev. Research 4, 033131 (2022)



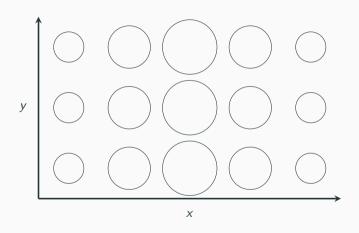
At T=0, all shape fluctuations are long-lived $\delta n(\Omega)=\sum_{lm}a_{lm}Y_{lm}(\Omega)$. At finite temperature, only energy and momentum I=0,1 are still conserved.

Long wave length excitations at finite temperature



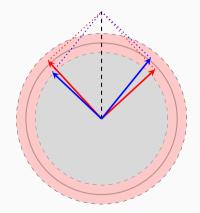
- Ground state: at each location \vec{x} , there is a fermi sphere with the given fermi energy, or the chemical potential.
- Localized collisions can only happen near the fermi-surface. For a sharp fermi surface, this is no collision.

Long wave length excitations



- Perturbation type I: a change in the chemical potential over space-time.
- The fermi surface still remains sharp. Such a perturbative does not come with dissipation!

Boltzmann equation and it relaxation time approximation



$$\left(\frac{\partial}{\partial t} + \nabla_{p}E_{p}\nabla_{x} - \nabla_{x}E_{p}\nabla_{x}\right)f(t,x,p) = \mathcal{C}[f]$$

Collision term

$$C[f] = \frac{1}{2E_1} \int d\Phi_{2,3,4} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) \overline{|M_{12\to34}|^2}$$

$$\{ f_1 f_2 (1 - f_3)(1 - f_4) - f_3 f_4 (1 - f_1)(1 - f_2) \}$$

Collision can only happen near the fermi-surface. The available phase space dies off as T^2 .

Linearized collision operator

Linearized collision operator: $f=f_{\rm eq}+\delta f$. Because most of the variation comes from the dof near the fermi surface, δf should be dominated by a delta function near the surface $\delta(E-\mu)=-d\Theta(\mu-E)/d\mu$

$$\delta f = -rac{\partial f}{\partial \mu} \phi = eta f_{
m eq} (1 - f_{
m eq}) \phi$$

The linearized collision operator is integral operator over ϕ

$$C'[\delta f] = \frac{1}{2E_1} \int d\Phi_{2,3,4} (2\pi)^4 \delta^{(4)} (p_1 + p_2 - p_3 - p_4) \overline{|M_{12\to34}|^2}$$
$$f_1 f_2 (1 - f_3) (1 - f_4) \{ \phi_1 + \phi_2 - \phi_3 - \phi_4 \}$$

Note that by symmetry in the local rest frame, if $\phi(E) = a + bE$, the collision operator always vanishes.

The generalized relaxation time approximation

Separate the off-equilibrium correction from the local equilibrium $f=f_{\rm eq}+\delta f$, and solve the linearized Boltzmann equation

$$\frac{d}{dt}f_{eq}(p^*(x), \mu^*(x)) \equiv \left(\frac{\partial}{\partial t} + \nabla_p E_p^* \nabla_x - \nabla_x E_p^* \nabla_x\right) f_{eq}(p^*(x), \mu^*(x))$$

$$= \mathcal{C}'[\delta f]$$

When inverting the linearized collision operator, there are ambiguities from due to conservation laws $\mathcal{C}'[a+bE]=0$

$${\mathcal{C}'}^{-1}\left[\frac{d}{dt}f_{\rm eq}(t,x,p)\right] = \delta f - \frac{\partial f}{\partial \mu^*} \times (A+BE)$$

The relaxation time approximation states that ${\mathcal{C}'}^{-1}\left[...\right] \approx au_{\mathrm{rel}} imes (...)$

Gradient expansion of the off-equilibrium effects

The most general solution to the δf correction under RTA:

$$\delta f = \frac{\partial f}{\partial \mu^*} \left\{ p^{*\mu} p^{*\nu} \underbrace{\sigma_{\mu\nu}}_{\text{Shear}} \phi_1 - \underbrace{\partial \cdot u}_{\text{Bulk}} (\phi_2 - a - bE^*) \right\},$$

$$\phi_1(p) = \frac{\tau_{\text{rel}}}{2E_p^*},$$

$$\phi_2(p) = \frac{\tau_{\text{rel}}}{3E_p^*} \left\{ (p^* \cdot u)^2 \left[1 - 3c_s^2 \left(1 - \frac{m^*}{\mu^*} \frac{dm^*}{d\mu^*} \right) \right] - (m^*)^2 \right\}.$$

The mean field effect enters in two ways:

- The mean-field mass and chemical potential: m^*, μ^* .
- ullet The mass dependence on chemical potential $\kappa^* = dm^*/d\mu^*$

Expression for the shear and bulk viscosity

Matching this result to the hydrodynamic description

$$\delta T^{\mu\nu} = \int \frac{p^{*\mu}p^{*\nu}}{E^*} \delta f \equiv \eta \sigma^{\mu\nu} - \zeta (g^{\mu\nu} - u^{\mu}u^{\nu}) \partial \cdot u$$

The expressions for shear and bulk viscosity are

$$\begin{split} \eta &= \frac{2}{15} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{\partial f_{\rm eq}}{\partial \mu^*} \frac{\mathbf{p}^4}{E_p^*} \phi_1 \equiv \frac{2}{15} \left\langle \frac{\mathbf{p}^4}{E_p^*}, \ \phi_1 \right\rangle, \\ \zeta &= \frac{1}{3} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \frac{\partial f_{\rm eq}}{\partial \mu^*} \frac{\mathbf{p}^2}{E_p^*} (\phi_2 - \mathbf{a} - \mathbf{b} E^*) \equiv \frac{1}{3} \left\langle \frac{\mathbf{p}^2}{E_p^*}, \ \phi_2 - \mathbf{a} - \mathbf{b} E^* \right\rangle. \end{split}$$

At this point $\eta > 0$, but ζ is not yet manifestly positive definite.

Landau Matching Condition and Positivity of ζ

The arbitrariness in a and b are fixed by the Landau matching conditions

$$\begin{split} \delta\epsilon &\propto \langle E_p^*, \phi_2 - a - b E_p^* \rangle = 0 \,, \\ \delta &n \propto \langle 1, \phi_2 - a - b E_p^* \rangle = 0 \,. \end{split}$$

This way, the bulk viscosity can be shown to be positive definite

$$\zeta = \frac{1}{3} \left\langle \frac{\mathbf{p}^2}{E_p^*}, \ \phi_2 - a - bE^* \right\rangle = \frac{1}{\tau_{\text{rel}}} \left\langle \frac{\tau_{\text{rel}} \mathbf{p}^2}{3E_p^*} - a' - b'E, \ \phi_2 - a - bE^* \right\rangle
= \frac{1}{\tau_{\text{rel}}} \left\langle \phi_2 - a - bE^*, \phi_2 - a - bE^* \right\rangle \ge 0.$$

Low temperature expansion

At low temperature, use the Sommerfeld expansion

$$f_{eq}(T \ll \mu^*) = \Theta(\mu^* - E^*) - \sum_{n=1}^{\infty} \left[1 - \frac{1}{2^{2n-1}} \right] 2\zeta_{2n}\delta^{(2n-1)}(E^* - \mu^*) + \mathcal{O}(e^{-\frac{\mu^*}{T}})$$

This result

$$egin{aligned} rac{\eta}{ au_{
m rel}} &= rac{1}{30\pi^2} rac{(
ho_F^*)^5}{\mu^*} (1 + \mathcal{O}(T^2/\mu^2)) \ rac{3\zeta}{ au_{
m rel}} &= rac{8\pi^2}{135} rac{m^{*4}
ho_F^* T^4}{\mu^{*5}} (1 + \mathcal{O}(T^2/\mu^2)) \end{aligned}$$

- At leading order in T/μ , they only depends on m^* and μ^* , but not $\kappa^* = dm^*/d\mu^*$.
- $\frac{\zeta}{\eta} \propto \left(\frac{T}{\rho_F^*}\right)^4 \times \left(\frac{m^*}{\mu^*}\right)^4$

Compare to results from R. Hakim and L. Mornas PRC47(1993)2846, expanded at $T \ll \mu$ and $p_F \gg M$.

$$\frac{\eta}{\tau_{\rm rel}} = \frac{1}{30\pi^2} \frac{(\mu_F^*)^5}{\rho_F^*}$$
$$\frac{3\zeta}{\tau_{\rm rel}} = \frac{8\pi^2}{135} \frac{m^{*4}\mu^* T^4}{\rho_F^{*5}}$$

Note that they do agree since $p_F \approx \mu$ in this limit.

Put in actually physics: the Walecka model

$$\mathcal{L}_{\mathrm{W}} = \sum_{\mathrm{N=n,p}} \overline{\psi}_{\mathrm{N}} \left(i \partial \!\!\!/ - m_{\mathrm{N}} + g_{\sigma} \sigma - g_{\omega} \psi + \mu_{B} \gamma_{0} \right) \psi_{\mathrm{N}}$$
Nucleon fields
$$+ \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) + \frac{1}{3} b m_{\mathrm{N}} \left(g_{\sigma} \sigma \right)^{3} + \frac{1}{4} c \left(g_{\sigma} \sigma \right)^{4}$$

$$\sigma \text{ meson field with self interaction}$$

$$- \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu}$$

$$\omega \text{ meson fields}$$

- \bullet σ meson: long-range attraction between nucleons. σ meson condensation corrects the quasi-particle mass in the mean field level.
- ullet ω meson: short-range repulsion. ω meson condensation corrects the chemical potential.

Walecka model: thermal dynamics

Thermal dynamics at the mean-field level $\sigma = \bar{\sigma} + (\sigma - \bar{\sigma})$, $\omega = \bar{\omega} + (\omega - \bar{\omega})$.

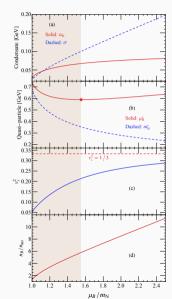
$$\mathcal{V}(T,\mu_N;\bar{\sigma},\bar{\omega}) = -\ln \mathrm{Tr} e^{-\int_0^{\beta} \mathcal{L}_E d au}$$

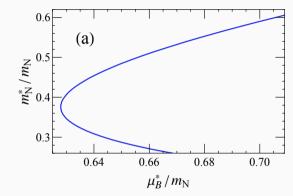
• Extrema conditions (Gap equations)

$$\frac{\partial \mathcal{V}}{\partial \bar{\sigma}} = m_{\sigma}^{2} \bar{\sigma} + \frac{\partial U}{\partial \sigma} \Big|_{\sigma = \bar{\sigma}} - 2g_{\sigma} n_{0}(T, \mu_{B}^{*}, m_{N}^{*}) = 0$$

$$\frac{\partial \mathcal{V}}{\partial \bar{\omega}} = m_{\omega}^{2} \bar{\sigma} - 2g_{\omega} n_{s}(T, \mu_{B}^{*}, m_{N}^{*}) = 0$$

Static properties

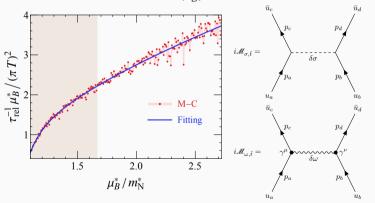


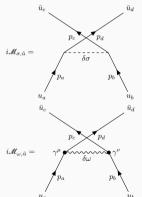


Note the turning point in the relation between m_N^* and μ^* . We use this as the point of the region of validity of the theory.

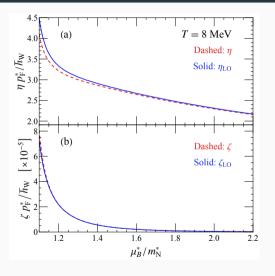
Walecka model: estimating the relaxation time

Scatterings are mediated by the residue quantum fluctuations $\delta\omega$ and $\delta\sigma$ around the mean field. Relaxation time scales as μ_R^*/T^2 .





Results for shear and bulk viscosity



Use the dimensionless ratio to estimate the ideal-ness of hydrodynamic: $\frac{\eta p_F^*}{e+P}$ and $\frac{\zeta p_F^*}{e+P}$

$$rac{\zeta}{\eta} \sim \left(rac{T}{
ho_{F}^{*}}
ight)^{4} imes \left(rac{ extit{m}^{*}}{\mu^{*}}
ight)^{4} \ll 1$$

Conclusion and prospective

- Revisit the derivation of shear and bulk viscosity of cold nuclear matter with mean field effects under the RTA approximation of Boltzmann equation.
- Results suitable for $T \ll \mu$ and $p_F \lesssim m_N$.
- $\zeta/\eta \sim \left(\frac{T}{P_F^*}\right)^4 \times \left(\frac{m^*}{\mu^*}\right)^4$
- When using the Walecka model:
 - Range of validity also limited by the non-monotonic relation between μ^* and m^* .
 - ullet Future: improve with non-linear ω potential and ω - σ coupling.

