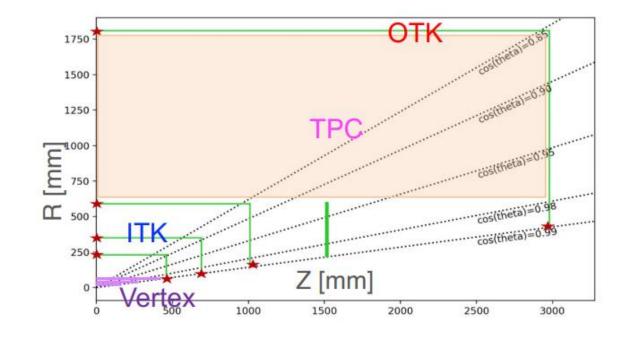
Software of the Silicon Trackers in CEPCSW

FU Chengdong

Silicon Tracker TDR meeting

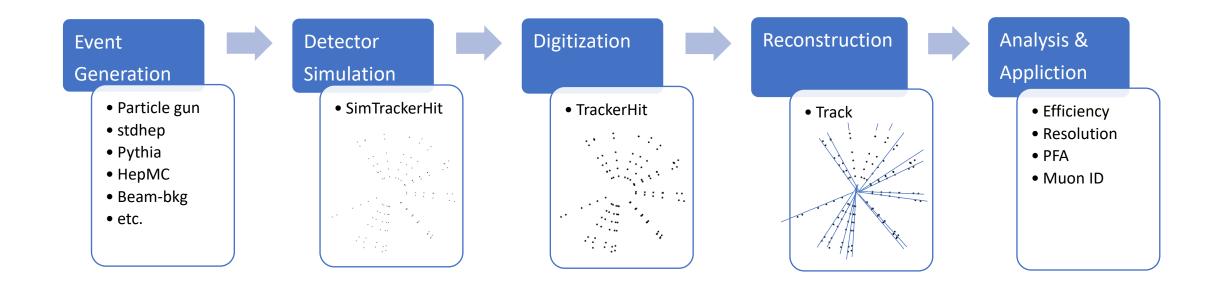
Mar. 07, 2025

Contents

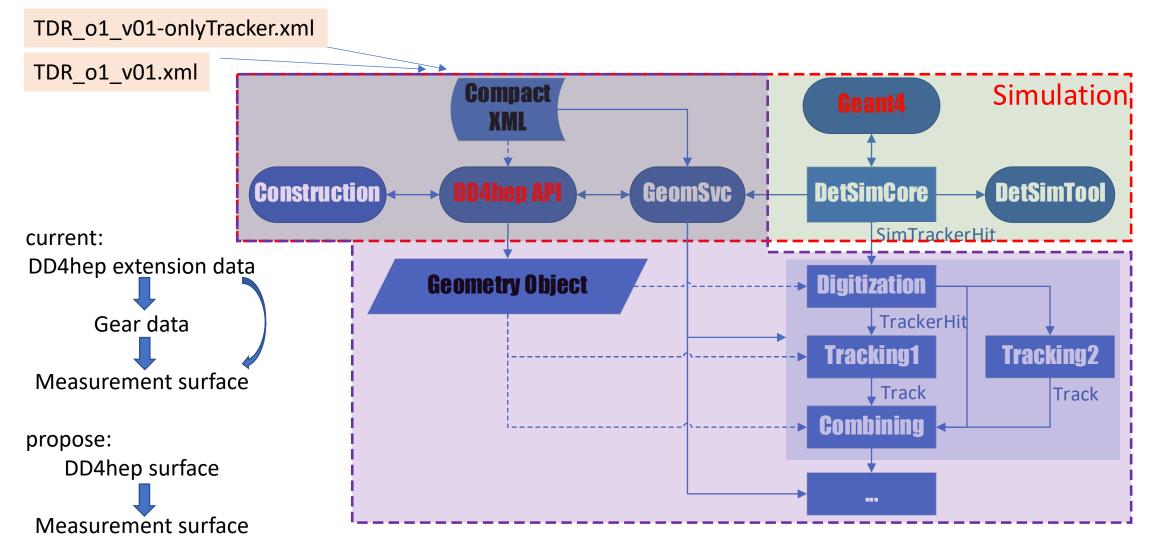

Introduction

- Overview of full simulation software
 - Simulation
 - Digitization
 - Track reconstruction
 - PFA etc.
- Developing status
 - Geometry update
 - Application
 - Plan & discussion
- Summary

Introduction


Physics process	Measurands	Requirement on tracker
$ZH, Z \rightarrow e^+e^-(\mu^+\mu^-), H \rightarrow \mu^+\mu^-$	$m_{H'} \sigma(ZH), BR(H \rightarrow \mu^+ \mu^-)$	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(GeV) \sin^{3/2}\theta}$

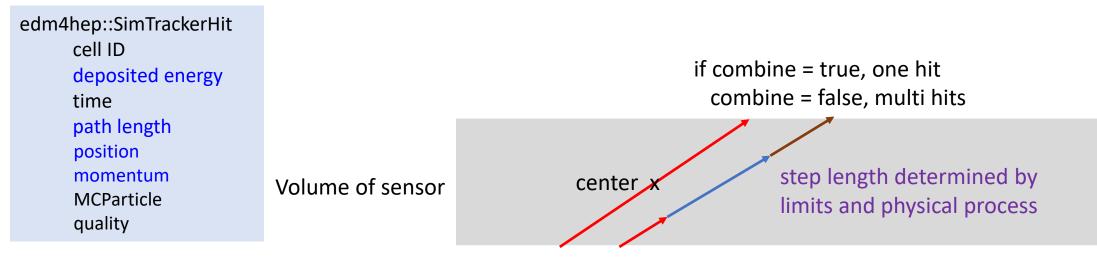
- The silicon trackers @CEPC will play an important role in detecting high momentum charged particle, be helpful for low momentum region, and unique for those tracks that can not reach TPC.
 - Vertex
 - ITK
 - OTK
- Challenge on application of new technology
 - Stitching vertex
 - LGAD
- On software, requirement on high tracking efficiency and accurate performance of reconstruction
- Application at the TDR stage
 - Simulation to estimation background
 - Track performance for tracker optimization
 - Track objects for PFA, physical analysis



Simulation and Reconstruction Chain

- Full simulation is performed in CEPCSW, and some fast simulation tools for trackers such as LDT, Delphes, tkLayout etc. are applied in standalone.
- The standard chain of MC simulation:

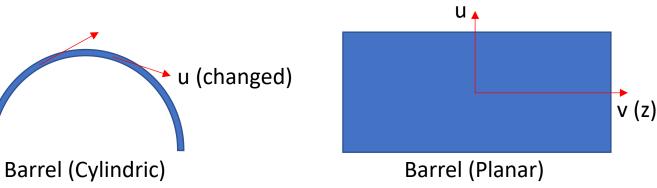
Implementation and Transmit of Geometry

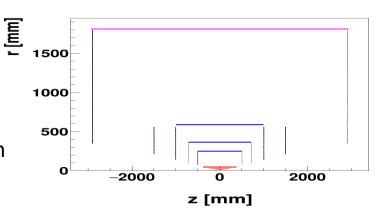

Sensitive Detector

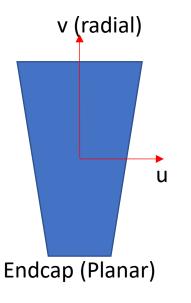
- **SD** in G4 simulation: G4Step \rightarrow G4TrackerHit \rightarrow SimTrackerHit
 - step length through option
 - ✓ <detector name="VXD" ... limits="tracker_limits"...>
 - ✓ if not set, use Geant4 default
 - combine steps to one hit
 - ✓ <detector name="VXD" ... combineHits="true" ...>
 - \checkmark if not set, default is false

<limitset name="tracker_limits"></limitset>
<pre><limit name="step_length_max" particles="*" unit="mm" value="5.0"></limit></pre>
imitset name="detail_limits">
<pre><limit name="step length max" particles="*" unit="mm" value="0.005"></limit></pre>

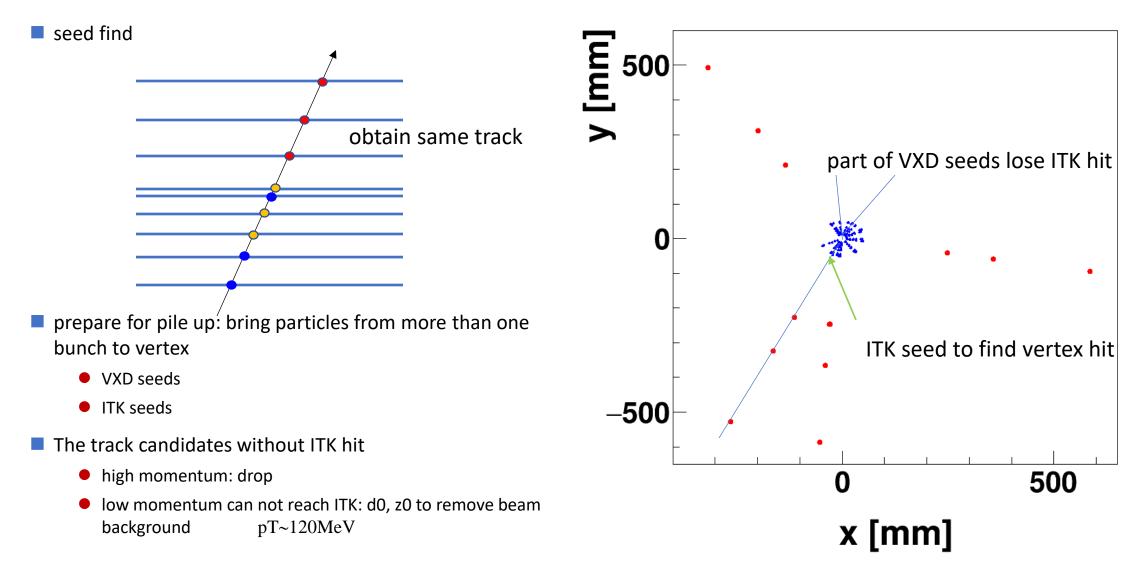

Save the center position of start and end as the position of SimTrackerHit

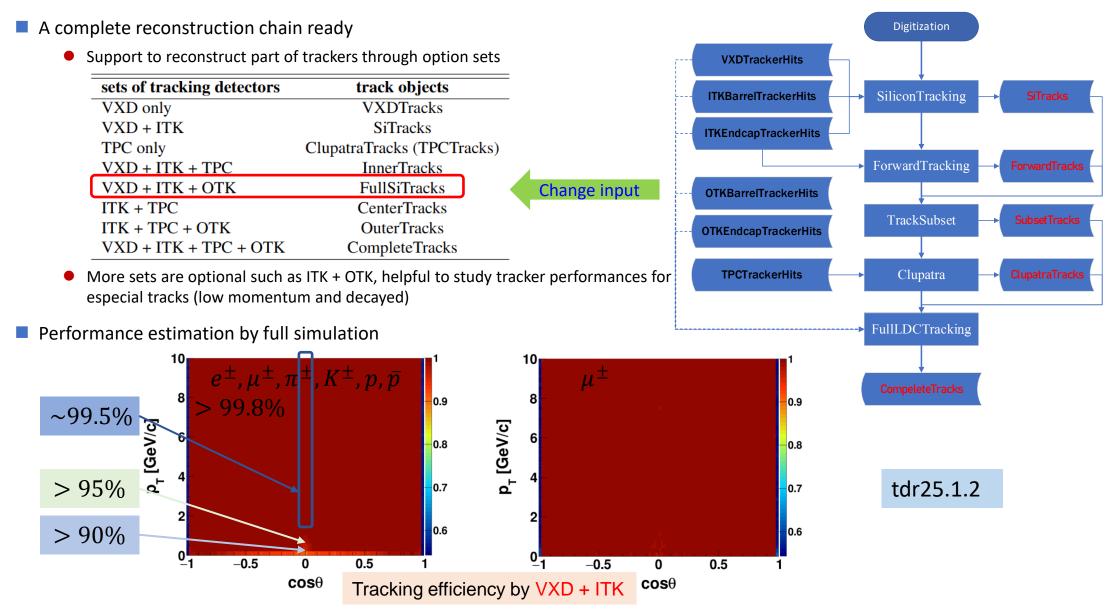

Save the direction from start to end as the direction of momentum of SimTrackerHit

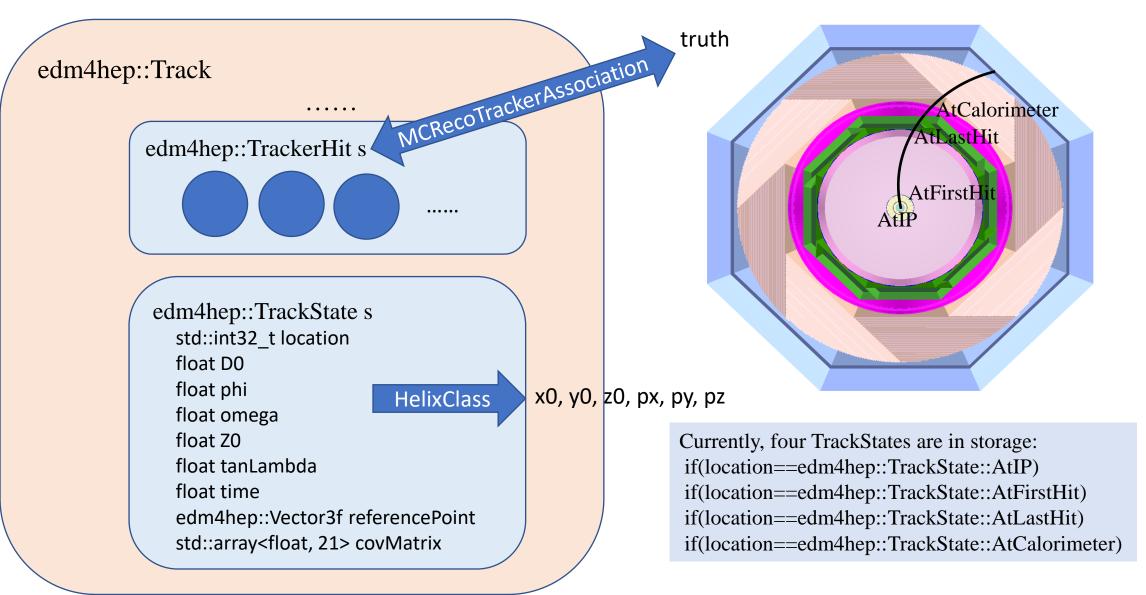



Digitization

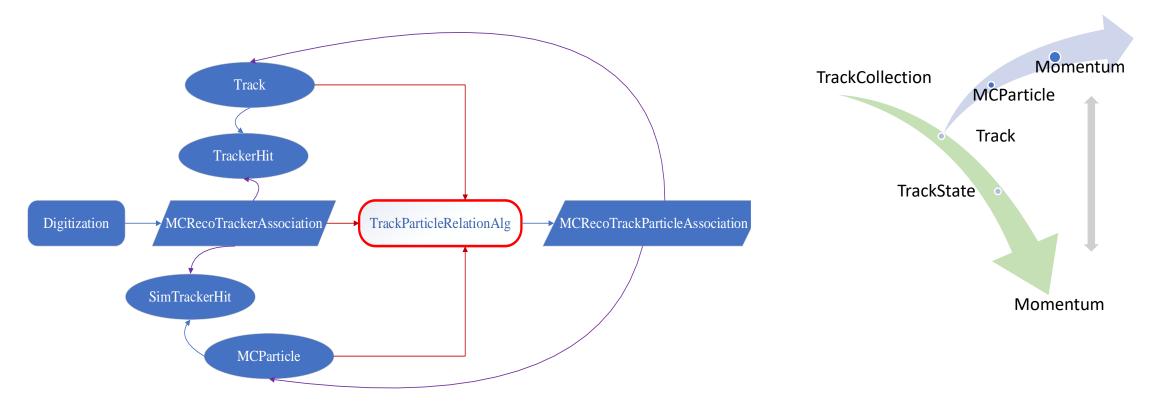
- Gaussian smearing on SimTrackerHit at measurement dimension (u,v)
 - pixel: 2D (u,v)
 - strip: 1D (u,0) or (0, v)
- Fixed spatial resolution or Parameterized spatial resolution through option
 - VXD: 5μm, ITK: 8μm (40μm), OTK: 10μm (1mm), TPC: varied with drift length
- Measurement surface at the center plane, consistent with the general simulated hit
- Drop threshold
 - Hit efficiency between [0,1]: current global for each sub-detector, local option for each sensor, support to make dead for whole sensor






Track Finding

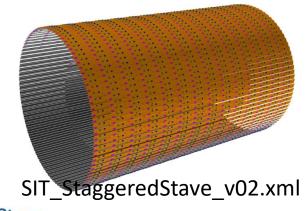
Tracking Options

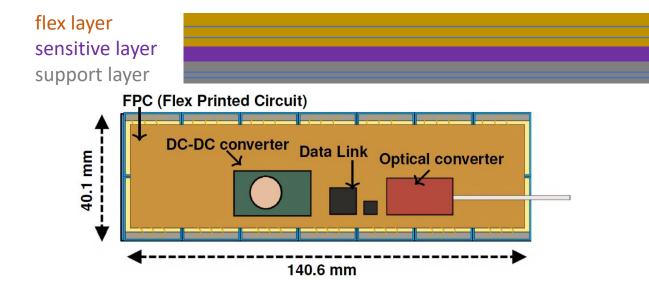

Output

Association

MCRecoTrackParticleAssociation

- Track
- MCParticle
- weight: number of tracker hit linked between MCParticle and Track (NL), for a particle, found track (minimum requirement: NLmaximum≥4)
- help to compare to MC truth

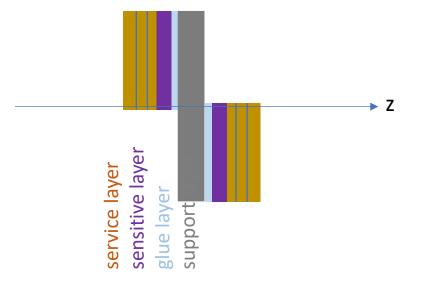



Geometry of ITKBarrel

- Previous version: SIT_StaggeredStave_v02.xml
 - JIANG Xiaojie implemented
 - non-uniform: DC-DC, optical, cooling
- Updated version: ITK_StaggeredStave_v03_01.xml
 - uniform supper layer to fix issue at low momentum as preliminary
 - support: truss frame, carbon fleece, graphite foil, cooling pipe, cooling fluid, carbon fiber plate, glue
 - sensitive: by gaped modules (by gaped sensors with dead side)
 - ✓ flex: FPC, other electronics, glue
 - ladder radius and number: $103 \rightarrow 102$

Information about staves, modules, and sensors used for 3 ITK barrels construction							
Barrel	Number of staves	Modules per stave	Sensors per module	Total number of sensors	Sensor area [m ²]		
ITKB1	44	7	14	4312	1.72		
ITKB2	64	10	14	8960	3.58		
ITKB3	102	14	14	19992	8.00		
Total	210			33264	13.31		

 Table 5.4: Information about staves, modules, and sensors used for 3 ITK barrels construction.



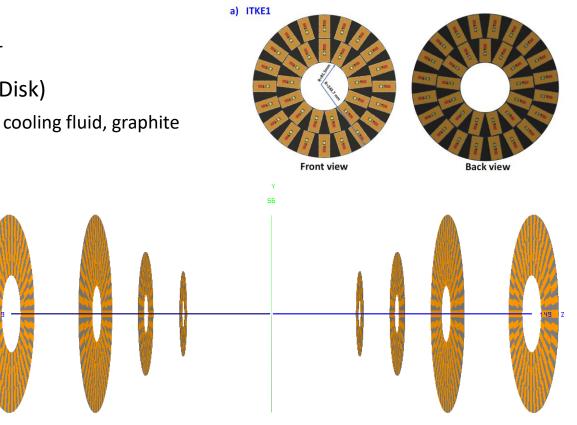
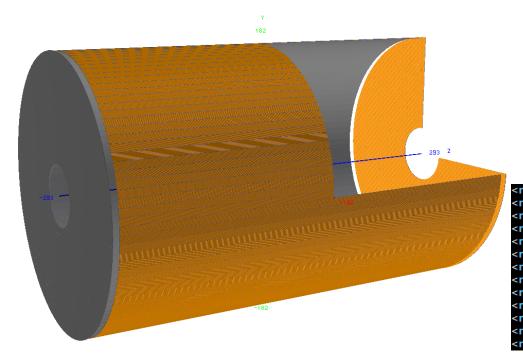

FPC Sensors Carbon Fleece Carbon Fleece Truss Frame

Figure 5.48: ITK barrel mechanics and cooling

Geometry of ITKEndcap

- Previous version: FTD_SkewRing_v01_07.xml
 - 16 trapezoid petals with sensitive layer and support layer
- Updated version: ITK_EndCap_v01.xml (MultiRingsZDisk)
 - support (disk): carbon fiber facesheet, cooling tube wall, cooling fluid, graphite foam+Honeycomb, carbon fiber plate facesheet
 - sensor: petal
 - ✓ glue: glue
 - ✓ sensitive: silicon
 - ✓ service: glue, FPC, other electronics



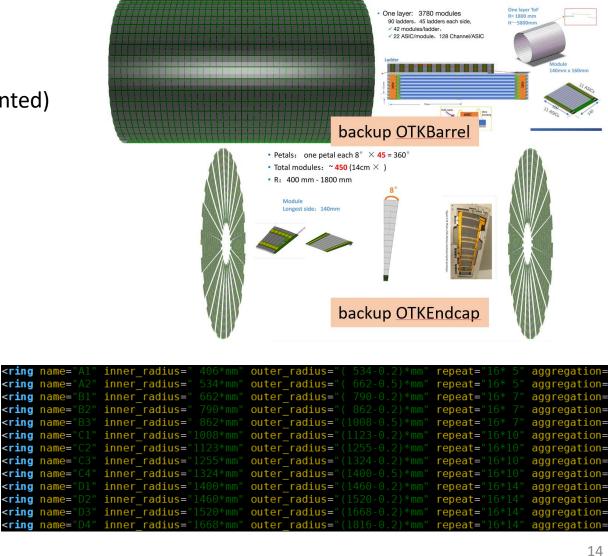

	The Module and Sensor Layout of a Single Face of Each ITK Endcap							
Endcap	Number of module rings	Number of modules per module ring	Number of sensors per module	Total sensors				
ITKE1	2	13,20	8,8	264				
ITKE2	3	16,24,28	8,8,8	544				
ITKE3	3	24,36,44	12,14,14	1408				
ITKE4	3	24,36,44	8,14,12	1224				
Total				3440				

Table 5.5: The Module and Sensor Layout of a Single Face of Each ITK Endcap

Geometry of OTK

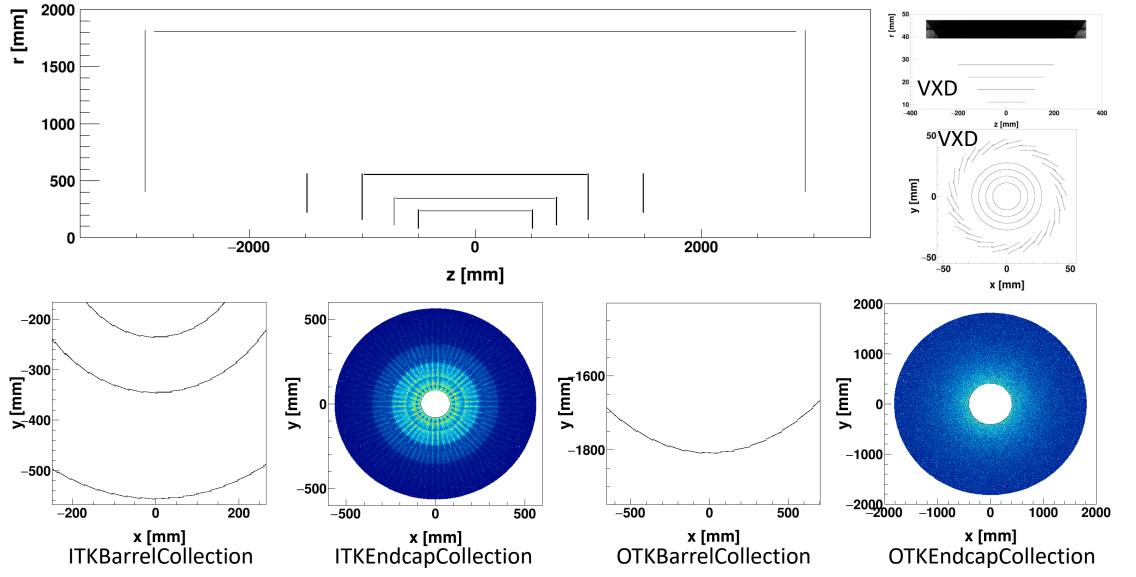
- Previous versions:
 - OTKB: backup (YU Dian implemented)
 - OTKE: 16 trapezoid petals, backup in patch
- Updated versions: baseline (LI Zhihao implemented)
 - OTKB: OTKBarrel v02.xml
 - OTKE: OTKEndcap_v02.xml

Material

Т

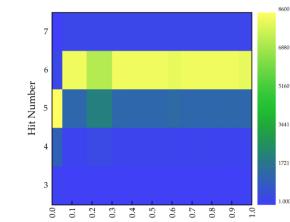
<flex <="" length="ITKBarrel_ladde</th><th>r_length_1" th="" width="</th><th>ITKBarrel_module_width"><th>erial="Air" vis="SeeThrough"></th></flex>	erial="Air" vis="SeeThrough">		
<slice <="" name="Glue" th=""><th><pre>thickness="100*um"</pre></th><th><pre>material="CER_ITK"</pre></th><th><pre>vis="YellowVis"/></pre></th></slice>	<pre>thickness="100*um"</pre>	<pre>material="CER_ITK"</pre>	<pre>vis="YellowVis"/></pre>
<slice <pre="">name="FPCInsulating"</slice>	<pre>thickness="100*um"</pre>	<pre>material="Polyimide_ITK"</pre>	<pre>vis="YellowVis"/></pre>
<slice <pre="">name="FPCMetal"</slice>	thickness="100*um"	<pre>material="G4_Al"</pre>	<pre>vis="GrayVis"/></pre>
<pre><slice <="" name="OEComponent1" pre=""></slice></pre>	thickness=" 25*um"	<pre>material="Kapton"</pre>	<pre>vis="YellowVis"/></pre>
<slice <="" name="0EComponent2" th=""><th></th><th></th><th></th></slice>			
<slice <="" name="0EComponent3" th=""><th>thickness=" 3*um"</th><th><pre>material="G4_Cu"</pre></th><th><pre>vis="RedVis"/></pre></th></slice>	thickness=" 3*um"	<pre>material="G4_Cu"</pre>	<pre>vis="RedVis"/></pre>

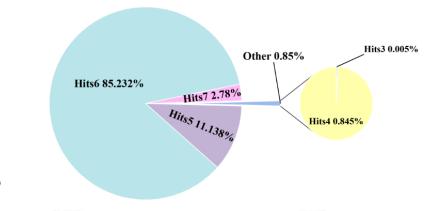
	Esti	mation of ITK stave m	aterial contribution	18	
Functional unit	Component	Material	Thickness [µm]	X ₀ [cm]	Radiation Length [% X ₀]
Sensor Module	FPC metal layers	Aluminium	100	8.896	0.112
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Sensor	Silicon	150	9.369	0.160
	Glue		100	44.37	0.023
	Other electronics				0.050
Cooling Plate	Carbon fleece layers	Carbon fleece	40	106.80	0.004
	Carbon fiber plate	Carbon fiber	150	26.08	0.057
	Cooling tube wall	Polyimide	64	28.41	0.013
	Cooling fluid	Water		35.76	0.105
	Graphite foil	Graphite	30	26.56	0.011
	Glue	Cyanate ester resin	100	44.37	0.023
Truss Frame	Carbon rowing				0.080
Total					0.673

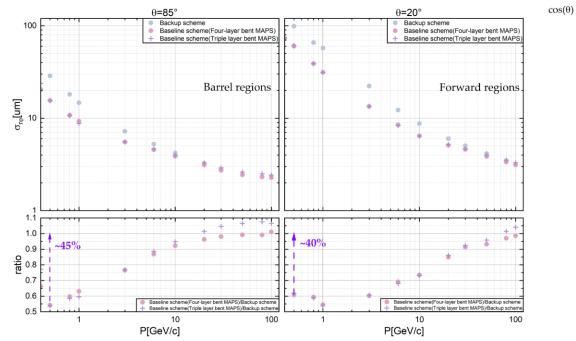

Table 5 0.	Estimation of ITK	stave material contributions	
Table 5.9:	Estimation of TTK	stave material contributions	

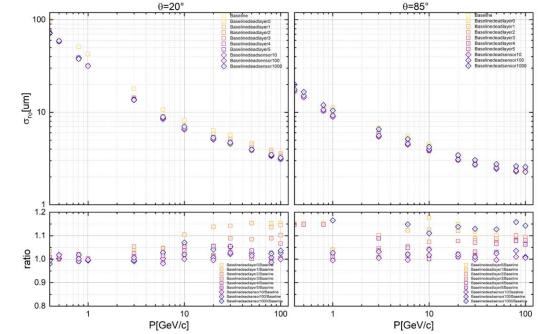
\ Num. \ Layer \		Atom Number/Z	ic Mass/A [g/mole]	Density [g/cm3]	Radiation Length [cm]	Thickness [cm]	Integrated X0 [cm]
1 A	\ir		14.801	0.0012	30392.1242	3.418	0.000112
2 0	CF ITK	6	11.956	1.6088	26.0800	0.021	0.000910
3 0	CarbonFleece ITM	κ 6	12.011	0.3998	106.8000	0.002	0.000929
4 6	Graphite_ITK	6	12.011	1.6076	26.5600	0.003	0.001042
5 F	Polyimide ITK	6	12.701	1.4282	28.4100	0.006	0.001267
6 0	G4 WATER	7	14.322	1.0000	36.0830	0.038	0.002317
7 0	CF_ITK	6	11.956	1.6088	26.0800	0.015	0.002892
8 0	CarbonFleece_ITk	κ 6	12.011	0.3998	106.8000	0.002	0.002911
9 (CER_ITK	7	13.326	0.8809	44.3700	0.010	0.003137
10 0	G4_Si	14	28.085	2.3300	9.3661	0.015	0.004738
11 0	CER ITK	7	13.326	0.8809	44.3700	0.010	0.004963
12 F	Polyimide_ITK	6	12.701	1.4282	28.4100	0.010	0.005315
13 0	G4_A1	13	26.982	2.6990	8.8963	0.010	0.006440
14 K	Kapton	6	12.701	1.2430	32.6437	0.003	0.006516
15 0	G4_POLYETHYLENE	5	10.429	0.9400	47.6314	0.006	0.006634
16 0	G4 Cu	29	63.546	8.9600	1.4356	0.000	0.006843

■ total 0.006843-0.000112=0.006731 of X0

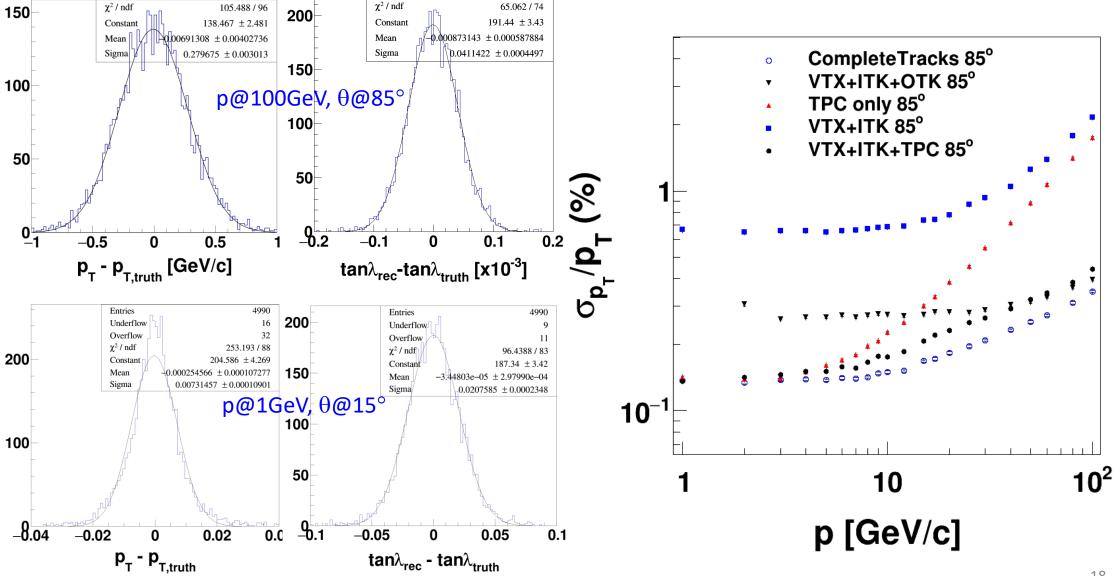

<pre><support length="ITKBarrel_l</pre></th><th>adder_length_1" th="" wid<=""><th>th="ITKBarrel_module_width" mate</th><th>e<mark>rial=</mark>"Air"</th><th>></th></support></pre>	th="ITKBarrel_module_width" mate	e <mark>rial=</mark> "Air"	>	
< slice name="TrussFrame"	thickness="208*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CF_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice <="" name="CarbonFleece" th=""><th>thickness=" 20*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CarbonFleece_ITK"</pre></th><th><pre>vis="LightGrayVis"/></pre></th></slice>	thickness=" 20*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CarbonFleece_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice <pre="">name="GraphiteFoil"</slice>	thickness=" 30*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="Graphite_ITK"</pre>	<pre>vis="GrayVis"/></pre>
<slice <="" name="CoolingTube" th=""><th>thickness=" 64*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="Polyimide_ITK"</pre></th><th><pre>vis="SeeThrough"/></pre></th></slice>	thickness=" 64*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="Polyimide_ITK"</pre>	<pre>vis="SeeThrough"/></pre>
<slice <="" name="CoolingFluid" th=""><th>thickness="379*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="G4_WATER"</pre></th><th><pre>vis="SeeThrough"/></pre></th></slice>	thickness="379*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="G4_WATER"</pre>	<pre>vis="SeeThrough"/></pre>
<slice <="" name="CFPlate" th=""><th>thickness="150*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CF_ITK"</pre></th><th><pre>vis="GrayVis"/></pre></th></slice>	thickness="150*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CF_ITK"</pre>	<pre>vis="GrayVis"/></pre>
<slice <="" name="CarbonFleece" th=""><th>thickness=" 20*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CarbonFleece_ITK"</pre></th><th><pre>vis="LightGrayVis"/></pre></th></slice>	thickness=" 20*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CarbonFleece_ITK"</pre>	<pre>vis="LightGrayVis"/></pre>
<slice <="" name="Glue" th=""><th>thickness="100*um"</th><th><pre>width="ITKBarrel_module_width"</pre></th><th><pre>material="CER_ITK"</pre></th><th><pre>vis="GrayVis"/></pre></th></slice>	thickness="100*um"	<pre>width="ITKBarrel_module_width"</pre>	<pre>material="CER_ITK"</pre>	<pre>vis="GrayVis"/></pre>


Positions of Hits of Silicon Trackers

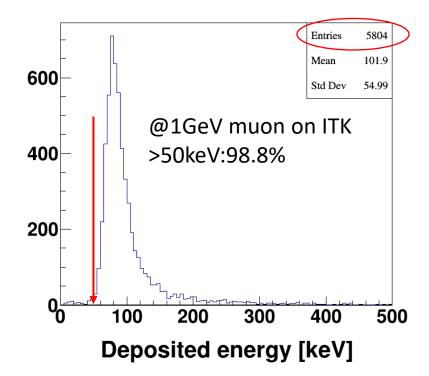



Application on the Vertex Detector

- Perform performance comparison on different case in CEPCSW (ZHANG Tianyuan)
 - Different schemes
 - Hit number
 - Dead sensors, even whole layer



Resolution


Issues and Plan

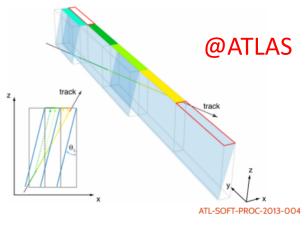
Hit efficiency

- Not perform threshold now
- To find out threshold about 99%?
- Effective thickness?

Software development

- Efficiency at low momentum and small polar angle
- Help tools
- Alignment
- Performance estimation on special case
 - Dead sensor
 - \checkmark Hit drop according to deposited energy or efficiency
 - \checkmark Hit drop in whole sensors
 - Background mixing


Fast Digitization


- To create a fast digitization similar with ATLAS
- For vertex detector
 - Without charge amplitude
 - ongoing: by LU Hancen
- For CMOS pixel/strip
 - Charge deposited
- For AC-LGAD
 - Charge deposited
- Estimate hit rate on merged hits while simulation
- Effective thickness?
 - Charge collected

Fast Digitization: Silicon Tracker

Simplified digitization of the signal based on simply geometry projection.

- Local entry and exit point in the detector module from the detector simulation.
- Evaluate the step in each sensor.
- Charge deposited in each pixel proportional to the step.
- Project the charge on the surface taking into account the Lorentz shift (θ_L).

- Create the clusters directly in digitization step merging all the pixels crossed by a single track
- Set a threshold to path length
- Propagate the truth informations to the reconstruction.

12

Summary

Full simulation chain for tracker has been created in CEPCSW

- Output edm4hep SimTrackerHit, TrackerHit, Track and association
- Helix tool to obtain momentum
- Apply on performance study and PFA, muon ID ongoing
- Baseline silicon trackers has been implemented: ITKB, ITKE, OTKB, OTKE
 - TDR baseline detector geometry TDR_o1_v01 close to forezen
- Towards TDR
 - Tracking under dead sensors
 - Tracking under background

Future

- Fast digitization
- Alignment