Status and prospects of the LHCf experiment

Hadronic Interaction Workshop 18-20 March 2025, Hong-Kong, China

Hiroaki MENJO ISEE, Nagoya University, Japan on behalf of LHCf Collaboration

Space-Earth Environmental Research

Contents

LHCf/RHICf: Very Forward experiment at LHC and RHIC \rightarrow production of most energetic particles \rightarrow Motivated for high-energy cosmic ray physics

- Introduction : Ultra-high energy cosmic rays (UHECRs) LHCf and RHICf experiments
- Results
 - Very forward photon, $\pi 0$, neutron measurements
 - η meson measurement
- Prospects
 - Strange particle measurements
 - Joint analyses with ATLAS
 - pO collision in 2025

High Energy Cosmic-rays

"A" measurement of UHECRs

$$E_{had.}^{end} = E_{CR} \prod \left(1 - R_{EM}^{i-th}\right)$$

J.C. Arteaga-Velmázquez ICRC2023

lγ, π⁰

- • $\pi^0 \rightarrow 2\gamma$
- Induce electromagnetic showers

Leading baryons

- bring the energy to next collisions
- Inelasticity: fraction of energy used for particle productions $k = 1 - E_{leading}/E_{CR}$

lγ, π⁰

- • $\pi^0 \rightarrow 2\gamma$
- Induce electromagnetic showers

Leading baryons

- bring the energy to next collisions
- Inelasticity: fraction of energy used for particle productions $k = 1 - E_{leading}/E_{CR}$

Interaction studies at LHC

<u>Cosmic-ray (target-rest frame)</u>

Interaction studies at LHC

<u>Cosmic-ray (target-rest frame)</u>

LHC(Center-of-mass frame)

proton, $7x10^{12}$ eV

18-20 March 2025

CR, **10**¹⁷ eV

proton, $7x10^{12} \text{ eV}$

N,O

Interaction studies at LHC

<u>Cosmic-ray (target-rest frame)</u>

N,O

LHC(Center-of-mass frame)

proton, $7x10^{12}$ eV

CR, **10**¹⁷ eV

proton, $7x10^{12} \text{ eV}$

Scattered proton

18-20 March 2025

RHICf experiment

- $pp\sqrt{s} = 510 \text{ GeV}$ (polarized beam)
 - **D** Equivalent to $E_{lab} = 1.4 \times 10^{14} \text{eV}$
 - Test of energy scaling with the wide p_⊤range
 - Single spin asymmetry measurement
 - The operation was successfully completed in 2017
 - Common operation with STAR

The Ir

18-20 March 2025

beam

LHCf/RHICf Operations and Analyses

Run	Elab (eV)	Photon	Neutron	П0		LHCf-ATLAS joint analysis
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		_		
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94	
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750 360 (2015)	PRD 86, 092001 (2012)	(2016)	
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP 2018, 73 (2018) JHEP 2020, 016 (2020)	preliminary		Photon in diffractive coll. Preliminary: ATLAS-CONF-2017-0 Final: under internal review
p-p √s=13.6TeV (2022)	9.0x10 ¹⁶					
p-Pb √s _{NN} =5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)		
р-Рb √snn=8TeV (2016)	3.6x10 ¹⁶	prelimiary				
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴	Submitted ArXiv:2203.15416		Spin Asymmetry PRL 124 252501 (2021)		with STAR

21-22 Feb 2023

LHCf/RHICf Operations and Analyses

Run	Elab (eV)	Photon		
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)		
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)		
p-p √s=13.6TeV (2022)	9.0x10 ¹⁶	← ne		
p-Pb √s _{NN} =5TeV (2013,2016)	1.4x10 ¹⁶			
p-Pb √s _{NN} =8TeV (2016)	3.6x10 ¹⁶	prelimiary		
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴	S-J-iu- ArXi		

21-22 Feb 2023

Photon (π^{0}) measurement at pp

18-20 Warch 2025

The Interaction workshop, Hong-Kong, China

Photon: RHICf v.s. LHCf

- Selected same X_F-p_T phase space coverage as those results
- Normalized by $\sigma_{inela.}$ (σ_{inela} = 48.3, 72.9, 79.5 mb for 0.5, 7, 13 TeV)

18-20 March 2025

Test of Feynman Scaling with RHICf ($\sqrt{s}=510$ GeV) and LHCf ($\sqrt{s}=7,13$ TeV)

Forward Neutron at pp, $\sqrt{s=13}$ TeV

- Inelasiticity measurement $(k = 1 - E_{\text{leading}}/E_{\text{CR}}),$ \rightarrow important parameters for understanding CR-air shower development.
- Update of the past result with extension of fiducial regions
- Energy resolution : 40%

18-20 March 2025

O. Adriani et al., JHEP07 (2020) 016

Inelasticity from the neutron result

18-20 March 2025

<<u>Inelasticity></u>

O. Adriani et al., JHEP07 (2020) 016

Nuon puzzle solved ??

- Inclusive γ, π^0, n results
 - Data on the middle of model predictions.
- Model updates

pre-LHC EPOS 1.99 EPOS LHC **QGSJET II-04 QGSJET 01/II-03** SIBYLL 2.1 SIBYLL 2.3

The Interaction workshop, Hong-Kong, China

7TeV results

 N_{ch}, σ_{inela}

What we can do in the next.

せるときかやき Swepkoutor Attantation field テスト統括:伊藤) て取得したデータ解析を行ってη、K⁰s、Λ微 リアズル0.18ア イタ 1万事象、イベント再構成後で約1千事象の タを測 Reconstruction method is well established (= method for π^0) $(u\overline{u}+d\overline{d}+s\overline{s})$

> FIG. 4.3. Contribution from decays of various particles to the atmospheric $\mu^+ + \mu^-$ (top left), $\nu_{\mu} + \bar{\nu}_{\mu}$ ((bottom left) and $\nu_{\tau} + \bar{\nu}_{\tau}$ (bottom right) flux in SIBYLL-2.3C and H3a primary model at $\theta = 60^{\circ}$.

η production diff. cross-section at pp, \sqrt{s} =13 TeV

18-20 March 2025

The Interaction workshop, Hong-Kong, China

18-20 March 2025

The Interaction workshop, Hong-Kong, China

Joint operation with ATLAS

- - matching

18-20 March 2025

Measurement of diffractive contribution

Joint operation in 2022

- Improvement from the last run in 2015
- Large statistics 300 M events (\leftrightarrow 6 M in 2015)
- Participation of ATLAS ZDC and RPs $ZDC \rightarrow$ Improvement of energy resolution for neutrons $RPs \rightarrow Tagging scattered protons$
- Physics Targets
- Detailed study of single diffractive collisions
- Measurement of proton excitation (Δ +)
- Measurement of Λ ($\Lambda \rightarrow$ n + π^{0})
- $p-\pi$ interaction study using OPE processes

One Pion Exchange (OPE)

The Interaction workshop, Hong-Kong, China

Joint operation with ATLAS RPs

Physics targets:

- Detailed study of single diffractive collisions,

Single diffractive

18-20 March 2025

p-O measurement in 2025

Notivation

Ideal condition of CR-Air interaction study

- First proton-"light ion" collisions at colliders
- Different modeling of nuclear effect induces difference predictions among models. Negligible contribution of Ultra Peripheral Collisions (UPCs)
- Nucleus(nucleon)-Nucleus interactions
 - **Glauber theory** describe as superposition of nucleon collisions
 - Nuclear effect
 - Nuclear shadowing
 - Limiting Fragmentation
 - QGP (core-corona)

рО $\int d^2 \sigma dy \, dP_T$

Summary

- LHCf measures the very forward neutral particles, which are motivated for cosmic ray physics.
- Presented results from Run 2 data
 - Updated neutron results \rightarrow inelasticity measurement.
 - η meson diff. cross-section
- Many analyses are on-going

 - \Box η , π^0 with high statistics data, K⁰_s measurement Divide a Joint analyses with ATLAS including ZDC, RPs (Joint analysis using Run 2 data is on-going, also)
- pO operation will be in 2025
 - Ideal condition for studying CR-Air interactions.

Thank you very much !!

Backup

Effect of the Ultra Peripheral Collisions (UPCs)

- UPCs are background
 - Air : Oxygen atom (neutral)
 - LHC Beam : Oxygen nucleus (+8e)
- $\sigma_{\rm UPC} \propto Z^2$
- p-Pb: QCD ~ UPC
- QCD >> UPC p-0 :

UPC contribution is negligible for "inclusive" measurement

Impact on LHCf-ATLAS joint analysis

- Need to be careful in the central-forward correlation analyses with ATLAS.
- In single diffractive study.
 - Little central activity in both low-mass diffractive and UPC events.
 - \rightarrow No way to separate
 - these events experimentally.
 - ^D The UPC contribution is still a controllable level.

Photon in $\eta > 10.94$

On-going Joint analyses with ATLAS

Superposition of single API: MPI \nearrow Forward neutron energy \searrow : MPI \nearrow Forward neutron energy \rightarrow Kinematic overlap

18-20 March 2025

