

Measurements of Hadronic Cross Section for Proton and Nuclei in Space with the **DAMPE Experiment**

Yifeng Wei (魏逸丰) **University of Science and Technology of China** (On behalf of the DAMPE Collaboration)

The Hadronic Interaction Workshop Hongkong, China, Mar. 19th, 2025

*Speaker: weiyf@ustc.edu.cn

- DAMPE experiment
- Results of hadronic cross section of Proton & Helium on a BGO target (Machine learning method)
- Results of Hadronic cross section of Carbon & Oxygen on a BGO target (Classical method)
- Summary

DArk Matter Particle Explorer (DAMPE)

Academy of Sciences (CAS).

• DAMPE (悟空) is a satellite-borne particle detector proposed in the framework of the Strategic Pioneer Program on Space Science, promoted by the Chinese

CNINA

- Purple Mountain Observatory, CAS
- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Modern Physics, CAS
- National Space Science Center, CAS

ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute

SWITZERLAND

- University of Geneva

Scientific Objects

In-orbit Operation

DArk Matter Particle Explorer

DAMPE sub-detectors:

- Charge measurement (dE/dx in PSD, STK)
- Tracking and Gamma-ray converting (STK and BGO)
- Precise energy measurement (BGO)
- Electron-hadron separation (BGO and NUD)

DAMPE Collab., Astropart. Phys. 95 (2017)

Motivation

experiments like DAMPE

A Typical Event in DAMPE

Helium event (1.8 TeV in BGO)

Charge measurement

Track measurement

- Hadronic interaction model introduces effects in various aspects
 - Energy response
 - Trigger efficiency
 - Reconstruction and selections related to the calorimeter
 - Backsplash -

• • •

What Can We Do in DAMPE

P & He Cross Section

Criteria for Sample Selection

- Data sample:
 Track finding (ML)
 - Flight data: 84 months
- Energy range: > 10 GeV
- MIP Trigger

- Pre-Selection:
 - Event containment
 - Interact after reaching the calorimeter

- Select P & He sample
 - Charge signal
 - Shower profile information (ζ)
- ~ 85% efficiency , while background ≤ 0.2%

- True interaction point is given by MC

- N_i , the number of events interacting in layer *i*, given by the classifier
- A relative fraction is defined as follows:

$$\alpha_{i} = \frac{N_{i}}{\sum_{j=2}^{10} N_{j}} \qquad 2 \le i \le 10$$

• Assume the true cross section is the MC cross section scaled by a constant factor.

$$\sigma_{true} = (1 + \kappa) \cdot \sigma_{MC}$$

• *k* determination: modify MC cross section until it matches data

- scanning *k*

Energy Dependence

- Cross section measured as function of particle's kinetic energy
 - Bin events in total energy deposited in calorimeter
 - Determine corresponding kinetic energies from MC
 - Fit Landau+Gaussian
 - → peak: reference value
 - → width: uncertainty

ted

Uncertainties

- Statistical uncertainty dominates in last bin
- Systematic uncertainty

• Main contributions: Classifier, spectral index, event selection and isotopes

P&HeResults

- Model comparisons: EPOS-LHC, QGSJetII-04, DPMJET3 ...

Proton: Within error-band of measurements at same energy; but slightly lower normalization.

DAMPE Collab., Phys. Rev. D. 111 (2025)

measurements. Slightly steeper rise, but models within analysis uncertainty.

P&HeResults

Proton: Within error-band of measurements at same energy; but slightly lower normalization.

DAMPE Collab., *Phys. Rev. D.* 111 (2025)

models within analysis uncertainty.

Effect on Flux Normalization

• Effective detector acceptance depends on cross section:

$$\Phi(E \to E + \Delta E) = \frac{N}{\mathcal{A}_{\text{eff}} \cdot \Delta E \cdot \delta}$$

- Compare acceptances, FLUKA over Geant4
 - Correcting cross section in MC to measured result significantly improves agreement
 - Minor effect for proton, major effect for helium

 δt

• Higher cross section \rightarrow lower flux (and vice versa)

Criteria for Sample Selection

- Data sample:
 - Flight data: 96 months
- Energy range: > 50 GeV
- HET trigger
- Track finding (Kalman Filter)
- Pre-Selection:
 - Event containment
 - Interact after reaching the calorimeter

- Select C & O sample
 - Charge signal (with both PSD and STK)
- background: 0.1 ~ 0.2 %

- Point of nuclei fragmentation \rightarrow Cross section
- Determine whether the nucleus survives through a layer by 8000 7000 changes in charge **ents** 6000

- Pink: ionization energy loss component (non-fragmented)
- Green: hadronic component (fragmented)

- Point of nuclei fragmentation \rightarrow Cross section
- Determine whether the nucleus survives through a layer by 8000 7000 changes in charge

- Survival rates of a layer (The ratio of particles leaving the layer to those entering it.): $\varepsilon_{sur}(E,\Delta l) = \frac{N_{leave}(E,\Delta l)}{N_{enter}(E,\Delta l)}$ $= \exp(-n \cdot \Delta l \cdot \sigma_{BGO}(E))$
 - E: Energy, Δl : Path length in BGO
- Then calculate the cross section:

$$\sigma_{BGO}^{FD}(E,\Delta l) = \sigma_{BGO}^{MC}(E,\Delta l) \cdot \frac{1}{1}$$

• Inelastic hadronic cross sections of carbon on BGO target with varying path lengths

- Systematic uncertainty
- Main contributions: model difference (G4 & FLUKA), statistic of MC, identification of ionization, BGO charge efficiency

- Model comparisons: FTFP_BERT, DPMJET3
- AMS02 measurement not for BGO, so scaled: $\sigma_{target}^{AMS} / \sigma_{BGO}^{AMS}$

C&O: Measured inelastic hadronic cross sections are in excellent agreement with the models

C& **O Results**

- Ion beam test @ CERN
- Remove the ionization component, just study the energy deposition of hadronic shower
- Geant4 shows better agreement with data compared to FLUKA

Beam Test

Dashed: woQuenching, Solid: Quenching

Z, Chen, et al., *NIMA*. 1055 (2023)

Beam Test

- Ion beam test @ CERN
- Geant4/BT ~ 0.98: the flux uncertainty would be affected by ~ 4%

- CR ion-flux measurement
- We presented hadronic cross section measurement
 - Bi₄Ge₃O₁₂ target
 - Proton: 18 GeV 9 TeV
 - Helium: 20 GeV 12 TeV
 - Carbon & Oxygen: 200 GeV 10 TeV
- to FLUKA

Summary

• Hadronic inelastic cross section is important systematic affecting

✓ First measurement at these high energies!

In DAMPE, Geant4 shows better agreement with data compared

Thank you!

