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Precision Matters 

Compatible with both CGC and collinear high twist predictions
Artwork by T.Ullrich

Highly dense region: gluon splittings and 
recombinations 
Non-linear evolution, gluon saturation 
Pillar scientific goal of EIC

Implications but not nailed down 
Needs different probes to differentiate 
Needs precision: go beyond LO 

See Bowen’s talk for recent progress 
within CGC EFT



3

Issues at NLO in CGC
((1 − z)xP+, l⊥)

xAPA

(zxP+, k⊥)

(xP+,0)

Kinematic constraint, implemented by hand 

See Bowen’s talk for more details 
and his solution to these issues   

z ≤ 1 −
l2
⊥

xs
, ψ(u⊥) → ψ(u⊥)[1 − J0(u⊥Δ)]

Negative cross section, calling for threshold 
resummation

… 

1505.05183

1806.03522, 2112.06975



4

Issues at NLO in CGC

Kinematic constraint, implemented by hand 

z ≤ 1 −
l2
⊥

xs
, ψ(u⊥) → ψ(u⊥)[1 − J0(u⊥Δ)]

Negative cross section, calling for threshold 
resummation

… 

This talk:   

Try to understand these 
problems within “textbook” 
QCD 

Fitting into the philosophy of 
effective field theory
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Idea of Effective Field Theories 

Ifull =
λ2

2 ∫
∞

0
dk

k
(k2 + m2)(k2 + M2)

=
x=k2

limϵ→0

1 − e−2iπϵ ∮C
dx

λ2(x/μ2)−ϵ

(x + m2)(x + M2)

=
2πi limϵ→0

1 − e−2iπϵ
Res

λ2(x/μ2)−ϵ

(x + m2)(x + M2)
=

λ2 ln m2

M2

m2 − M2 ≈M≫m − λ2
ln m2

M2

M2
+ 𝒪(

m2

M2
)

 is finite, ,  ,  is barely a 

mathematic trick  

Dominant contribution from  and   

Logarithmic enhancement when there exits hierarchy ( ), 

, which spoils the perturbative expansion.

Ifull ∼|x|→∞ |x |−1 → 0 ∼|x|→0 0 x−ϵ

k2 ∼ − m2 k2 ∼ − M2

M ≫ m

λ2 ln
m2

M2
≳ 1

Toy Model Full Theory:
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Ik2∼−m2 =
limϵ→0

1 − e−2iπϵ ∮C
dx

λ2(x/μ2)−ϵ

(x + m2)(x + M2)
≈x∼m2≪M2

λ2 limϵ→0

1 − e−2iπϵ ∮C
dx

(x/μ2)−ϵ

(x + m2)(M2)
=

λ2

M2ϵ
− λ2 ln(m/μ)2

M2

Ik2∼−M2
limϵ→0

1 − e−2iπϵ ∮C
dx

λ2(x/μ2)−ϵ

(x + m2)(x + M2)
≈x∼M2≫m2

λ2 limϵ→0

1 − e−2iπϵ ∮C
dx

(x/μ2)−ϵ

x(x + M2)
= −

λ2

M2ϵ
+ λ2 ln(M/μ)2

M2

EFT: Focus on one single scale each time

M2 → ∞

m 2 → 0

Idea of Effective Field Theories 

Now, UV regulator

Now, IR regulator
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Power expansion at the integrand level (different 
modes), seemingly same integration boundary but 
different domain. 
Neither integral (effective theory) is finite, UV for 

 and IR for . Both need a regulator, which 

leads to  dependence.  (Allow for RGE to resum logs) 

, poles cancel, independent of 

Ik2∼−m2 Ik2∼−M2

μ
Ik2∼−m2 + Ik2∼−M2 = Ifull

μ

Idea of Effective Field Theories 
EFT: Focus on one single scale each time

Ik2∼−m2 =
limϵ→0

1 − e−2iπϵ ∮C
dx

λ2(x/μ2)−ϵ

(x + m2)(x + M2)
≈x∼m2≪M2

λ2 limϵ→0

1 − e−2iπϵ ∮C
dx

(x/μ2)−ϵ

(x + m2)(M2)
=

λ2

M2ϵ
− λ2 ln(m/μ)2

M2

Ik2∼−M2
limϵ→0

1 − e−2iπϵ ∮C
dx

λ2(x/μ2)−ϵ

(x + m2)(x + M2)
≈x∼M2≫m2

λ2 limϵ→0

1 − e−2iπϵ ∮C
dx

(x/μ2)−ϵ

x(x + M2)
= −

λ2

M2ϵ
+ λ2 ln(M/μ)2

M2

Now, UV regulator

Now, IR regulator
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Idea of Effective Field Theories 

e.g.,

EFT: Focus on one single scale each time
Mode expansion based on  (set by the 
observable/constraint)

v

Looking for configurations that 
makes internal line almost on-shel 

 will enforce the configurationsv
σ(v) →v→0 H × S × Ji…

ϕ = ∑
i=H,S,J

ϕi
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Modes in pA forward scattering 

z ∼ 1 − z ∼ 𝒪(1)

p+ ≡ p0 + p3 , p− ≡ p0 − p3

v ∼ pt / s ∼ Qs/ s ≪ 1
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Modes in pA forward scattering 

Pc =
s

2
(1,v, v2)z ∼ 1 − z ∼ 𝒪(1)

Pc̄ =
s

2
(v2, v,1)

q ∼ ΔPc ∼ ΔPc̄ ∼
s

2
(v2, v, v2)

p+ ≡ p0 + p3 , p− ≡ p0 − p3

+ −t

Collinear: 

ollinear: C̄

Glauber: 

v ∼ pt / s ∼ Qs/ s ≪ 1
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Modes in pA forward scattering 

v ∼ pt / s ∼ Qs/ s ≪ 1

Pc =
s

2
(1,v, v2)z ∼ 1 − z ∼ 𝒪(1)

Pc̄ =
s

2
(v2, v,1)

q ∼ ΔPc ∼ ΔPc̄ ∼
s

2
(v2, v, v2)

+ −t

Collinear: 

Glauber: 

Suppressed

Eikonalization of the Glauber mode

=
Reproduce CGC (modes) and the 
CGC “Wilson line” (shock wave)

ollinear: C̄
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Modes in pA forward scattering 

v ∼ pt / s ∼ Qs/ s ≪ 1

Pc =
s

2
(1,v, v2)z ∼ 1 − z ∼ 𝒪(1)

Pc̄ =
s

2
(v2, v,1)

q ∼ ΔPc ∼ ΔPc̄ ∼
s

2
(v2, v, v2)

+ −t

Collinear: 

Glauber: Soft: Ps ∼
s

2
(v, v, v)

Absent in the CGC EFT 
Crucial for kinematic constraint, producing correctly the poles …   
Threshold resummation 

ollinear: C̄

1910.10166
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Interaction in pA forward scattering 
Start with the QCD Lagrangian and expand it in terms of :v

Collinear-collinear interaction:

ϕ = ∑
i=modes

ϕi

n = (1,0,0,1), n̄ = (1,0,0, − 1)

Keep the leading contribution in  

Similarly we have gluon Feyn rules

v

n̄ ⋅ A = 0

“Bad components in terms of  the good components”

Collinear propagators:

p/ = p+ n/
2

+ p− n̄/
2

+ pt/
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Interaction in pA forward scattering 
Start with the QCD Lagrangian and expand it in terms of :v

Collinear propagators:

“Bad components in terms of  the good components”

n = (1,0,0,1), n̄ = (1,0,0, − 1)

Rotation in the 
color space when 
emitting a gluon

n̄ ⋅ A = 0

ϕ = ∑
i=modes

ϕi

Collinear-collinear interaction:
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Interaction in pA forward scattering 
Start with the QCD Lagrangian and expand it in terms of :v

n = (1,0,0,1), n̄ = (1,0,0, − 1) n̄ ⋅ A = 0

ϕ = ∑
i=modes

ϕi

Interaction with soft (eikonal):

Interaction with the Glauber (or shockwave interaction):

Same for collinear and soft, due to small Glauber 
“+” component, ∼ 𝒪(v2)
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Interaction in pA forward scattering 
Start with the QCD Lagrangian and expand it in terms of :v

n = (1,0,0,1), n̄ = (1,0,0, − 1) n̄ ⋅ A = 0

ϕ = ∑
i=modes

ϕi

Interaction with soft (eikonal):

Interaction with the Glauber (or shockwave interaction):

Same for collinear and soft, due to small Glauber 
“+” component, ∼ 𝒪(v2)

Rapidity regulator (similar to TMD), 
: rapidity scaleν

P+

P−

μ ∼ v s
S

C

ν
S ∼ v

s
νJ ∼ s
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Interaction in pA forward scattering 

e.g., Soft ISR:

Typical color structure 
in the small-x physics
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pA forward scattering: generic case 

 … (1) 

Both collinear and soft radiations are 
allowed 

Same topology for both collinear and soft 
radiation, but different Feyn. Rules 

Different phase space constraint. e.g. Soft 
, since (1)

z ∼ 1 − z ≫ v

∝ δ(1 − z − Eg) ≈ δ(1 − z)
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pA forward scattering: generic case 

Reproduce the known NLO calculation 

Pole terms:  

Collinear: Soft:

 poles in the collinear sector, 
proportional to the splitting function, 
to be absorbed by the PDF and FF, 
leads to DGLAP evolution 

ϵ−1 fi/P
Dh/j
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pA forward scattering: generic case 

Reproduce the known NLO calculation 

Pole terms:  

Collinear: Soft:
P+

P−

μ ∼ v s
S

C

ν
S ∼ v

s
νJ ∼ s

Additional rapidity  poles in both 
sectors, characterizing the rapidity 
divergence as  in coll. or 

 in soft 

Logs indicate the natural scale for each 
sector

η−1

P− → 0
P± → 0 poles in the collinear sector, 

proportional to the splitting function, 
to be absorbed by the PDF and FF, 
leads to DGLAP evolution 

ϵ−1
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pA forward scattering: generic case 

Reproduce the known NLO calculation 

Pole terms:  

Collinear + Soft:

-pole to be absorbed by the nucleus structure 
function   

Log indicates correctly the small-x scale 

-pole produces the rapidity RG equation for the 
nucleus structure function = BK! 

η−1

ℱA

η−1

P+

P−

μ ∼ v s
S

C

ν
S ∼ v

s
νJ ∼ s

ℱA
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pA forward scattering: generic case 

Collinear + Soft:

Finite terms: 

, huge threshold logs,  
Threshold PDF and FF can be eliminated by 

 
 term: non-LO kinematic factor + color flow (BK real) 

due to interference

z → 1 P(z) ∼ P̃(z) ∼ 2/(1 − z)+

μ ∼ c0/ |rt |
P̃
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pA forward scattering: threshold case 

 … (2) 

Only soft real emission are allowed 

Phase space constraint. Soft
, can NOT 

be further expanded, since (2)

z ∼ 1 ≫ 1 − z ∼ v

∝ δ(1 − z − Eg) ≈ δ(1 − z)

soft

Collinear + soft

-pole  η−1 ⟹ Large threshold 
logs automatically 
resummed by 
rapidity RGE ∫

1

0

zN−1

(1 − z)+
dz → − ln(N̄)
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pA forward scattering: threshold case 

Can also reproduce the RGE result by summing all 
order emissions in the strong order limit (LL) 

=
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pA forward scattering

Good agreement 
with current data 

2004.11990
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pA forward scattering
s = 5.02 TeV , 5.2 < ηJ < 6.6 , anti-kT

Full jet algorithm (numerical monte carlo) v.s. small-R approximation (analytic)

2204.03026
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Thanks!


