

Photon study progress and $H \rightarrow \gamma \gamma$ benchmark

CEPC Physics Performance Wednesday Working Meeting

Mohamed Reda Mekouar

March 5, 2025

Institute of High Energy Physics, Chinese Academy of Sciences

-Differential distribution plots for Ref-TDR: Energy Resolution, Convertion Rate & Efficiency (relative to Truth Photon Energy and $cos(\theta)$)

-Truth distributions from latest Pythia generated samples for $e^+e^- o qq(\gamma\gamma)$

Convertion Rate

For the convertion rate, the results are pretty similar to those from the CDR with the barrel ($|cos(\theta)| < 0.8$) around 6-8% and the endcap ($|cos(\theta)| > 0.8$) reaching 25%

Efficiency

The efficiency of reconstruction is mostly worse (less than 100%) for low energies (1 & 1.5 GeV) except in the crack region between barrel and endcap where it only reaches 100 % at 10 GeV

Energy Resolution per $cos(\theta)$

* $|cos(\theta)|$ =0.8375: Crack region between barrel and endcap showing strange behavior : Not shown in plot

*Not big difference between barrel and endcap modules resolution

*Outer points in dead material (cracks between 2 modules)

*Lowest energies give worse resolution

Energy Resolution per Egen

-Reconstruction in barrel and endcap similar (less than 1%) within the module

Energy Resolution per *E*_{gen} within crack region

-Crack region results not pertinent (strange behavior, no peak)

For the $H \to \gamma \gamma$ analysis, one of the main backgrounds with most contribution is $e^+e^- \to qq(\gamma\gamma)$

Using Pythia and linking it with Delphes for fast simulation, we are looking to simulate events for this background while applying a condition on diphoton invariant mass $m_{\gamma\gamma}$ >90 GeV In Pythia, the process is $e^+e^- \rightarrow 7^0/c_1 \rightarrow aa(ac)$ (ffbar2gm7) with photons in final state

In Pythia, the process is $e^+e^- \rightarrow Z^0/\gamma \rightarrow qq(\gamma\gamma)$ (ffbar2gmZ) with photons in final state coming from ISR & FSR

7

Truth Distributions

Checking the dijets and diphoton distribution to see if any cut has been applied (cut on diphoton invariant mass wanted)

Truth Distribution

Diphoton Mass Distribution (110-140 GeV)

Applying another cut on our diphoton distributions, we found a shape similar to the one(reco) from the CDR analysis that could be fitted using a 2nd order Chebyshev fit

Thank you!

Convertion rate per Egen

P.E.R. per *E*_{gen} for dead material (both barrel & endcap)

Few points can be better fitted (maybe with more data) but fit is not only problem

Barrel dead material (Crack $\theta = 41.55^{\circ}$)

Barrel dead material (Crack $\theta = 41.55^{\circ}$)

Very few points have problems in fit (lack of data, or just fit not well tuned) but for most points, good fit yet no specific trend with evolution of energy

Endcap dead material (Crack $\theta = 22.15^{\circ}$)

Endcap dead material (Crack $\theta = 22.15^{\circ}$)

team, expectation: similar and much closer curves)

*Strange behavior for $|\cos(\theta)|=0.8375$: Crack region between barrel and endcap (no peak)

Crack region through small energies (1-4.5 GeV)

Crack region through mid to high energies (30-100 GeV)

