C波段光阴极及高梯度加速结构研究平台 平台及初步束流测试

刘星光 2025年2月28日

1 国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences (CLS)

戰架中子源科学中心 **Spallation** Neutron Source Science Center

WHY 我们为什么要搭建这么一个平台

HOW 平台现在什么样

WHAT 我们在做些什么

国内第四代先进光源

南方先进光源规划图

集**散裂中子源**与**同步辐射**,自由电子激光为一体的综合性光学研究平台

◆ 中国散裂中子源二期工程 - "十四五"规划

✤ 南方先进光源预研

常温C波段光阴极电子枪现状

THU(2010)

SwissFEL Injector Test Facility(2014)

电子枪研制目标

2021.9	初步提案
2022.1	项目启动
2022.4	外部评审
2022.12	硬件到位
2023.1	安装调试
2024.7	高功率测试
2024.11	安装改造
2024.12	束流测试

电荷量/nC	重频	归一化发射度		
0.1	100 ^{*1}	<0.2		
1.0	10	<1 π.mm.mrad		

<u>常规C波段加速管研制目标*</u>

梯度	长度	孔径	
40 MV/m	1.8~2m	>6.4 mm	

8.5 m

2022.7

2023.10

2024.11

	频率(MHz)	场平整度(%)
Superfish	5711.92	0.355
CST	5711.978	0.4

"#0"

"#1"

阴极面 Sa-10nm/13 nm

*2022.9 在厂家完成联调 *2023.1 完成出厂验收 *2023.3 现场安装调试

驱动激光出厂检验

检验项目	出厂验收	单位	验收检验设备	
中心波长	265.7±1.76	nm	光谱仪	
脉宽	0.24	ps	单次互相关仪	
能量	2.62±0.02	mJ	能量计	
功率抖动 (_{RMS})	0.6%(短) 0.71%(长)	-	功率计	
重频	1/10/20/50/100	Hz	光斑分析仪	
指向稳定性	8	μrad	光斑分析仪	
光斑直径	10	mm	光斑分析仪	
锁相抖动	77.2 (RMS)	fs	相噪分析仪	

265.8 nm, 出口处2.1mJ (到虚阴极) 传输效率为~14%

激光调试布局

二维设计

2023.3 主/副螺线管已完成磁测 2023.7 螺线管组合测试,二极磁铁测试

电子枪测试平台控制总体架构

C波段速调管功率源联锁保护系统

灯丝 🥥 开 🥥 关	高压 🥥 🛛 开 🛛 🥥 🛛 关	射频 🥥 开 🕢 关 复位
犬态显示		
总入水温度 <acc_gu td="" ℃<=""><td>总入水压力 <acc_gu 5<="" mpa="" td=""><td>境温度 <acc_gu %<="" <acc_gu="" td="" ℃="" 环境温度=""></acc_gu></td></acc_gu></td></acc_gu>	总入水压力 <acc_gu 5<="" mpa="" td=""><td>境温度 <acc_gu %<="" <acc_gu="" td="" ℃="" 环境温度=""></acc_gu></td></acc_gu>	境温度 <acc_gu %<="" <acc_gu="" td="" ℃="" 环境温度=""></acc_gu>
高压调制器使自	步💋 功放使能 💋	低电平使能
订丝联锁区		
	急停 🏉	真空报警1 💋
高压联锁区		
总入水过温 🥟	总入水过	压 🏉
速调管收集极回水过温 🥏	速调管收极集入水压过	玉 🧖 速调管收集极流量欠流 🌈 🛛 <acc_gu h<="" m3="" td=""></acc_gu>
速调管腔串及输出窗回水过温 🥟	速调管腔串及输出窗入水过	玉 🧖 速调管腔串及输出窗流量欠流 🌈 🛛 <acc_gu m3="" r<="" td=""></acc_gu>
速调管线圈回水过温 🥐	速调管线圈入水压过	玉 🧑 速调管线圈流量欠流 🏉 <acc_gu m3="" r<="" td=""></acc_gu>
高压调制器回水过温 🥜	高压调制器入水压过	玉 🥏 高压调制器流量欠流 🏉 <acc_gu h<="" m3="" td=""></acc_gu>
射频联锁区		
脉冲变压器回水过温 🥑	脉冲变压器入水压过	玉 💋 脉冲变压器流量欠流 💋 🛛 <acc_gu f<="" m3="" td=""></acc_gu>
脉冲压缩器回水过温 🥐	脉冲压缩器入水过	玉 👩 脉冲压缩器流量欠流 👩 🛛 <acc_gu h<="" m3="" td=""></acc_gu>
环形器及负载回水过温 🥐	环形器及负载入水压过	玉 👩 环形器及负载流量欠流 👩 <acc_gu m3="" td="" ł<=""></acc_gu>
可调功分器及负载回水过温 🥐	可调功分器及负载入水压过	玉 👩 — 可调功分器及负载流量欠流 🏉 🛛 <acc_gu h<="" m3="" td=""></acc_gu>
调机负载回水过温 🥐	调机负载入水压过	压 🏉 调机负载流量欠流 🌈 🛛 <acc_gu h<="" m3="" td=""></acc_gu>
波导1回水过温 🥐	波导1入水压过	压 🏉 波导1流量欠流 🏉 <acc_gu h<="" m3="" td=""></acc_gu>
波导2回水过温 🥐	波导2入水压过	压 👩
波导3回水过温 🥐	波导3入水压过	压 👩
波导4回水过温 🥐	波导4入水压过	压 👩
波导5回水过温 🥐	波导5入水压过	压 👩
波导6回水过温 🥜	波导6入水压过	压 🧑
波导7及定耦5回水过温 🥜	波导7及定耦5入水压过	玉 🧑 波导7及定耦5流量欠流 🏉 <acc_gu m3="" r<="" td=""></acc_gu>
波导8及定耦6回水过温 🥜	波导8及定耦6入水压过	玉 🧑 波导8及定耦6流量欠流 🥐 <acc_gu h<="" m3="" td=""></acc_gu>
定耦1回水过温 🥟	定耦1入水压过	压 🧑 定耦1流量欠流 🧖 <acc_gu m3="" r<="" td=""></acc_gu>
定耦2回水过温 🧪	定耦2入水压过	压 🧑 定耦2流量欠流 萀 <acc_gu h<="" m3="" td=""></acc_gu>
定耦3回水过温	定耦3入水压过	压 🧑 定耦3流量欠流 萀 <acc_gu m3="" r<="" td=""></acc_gu>
定耦4回水过温 🥏	定耦4入水压过	压 🧖 定耦4流量欠流 🍎 <acc_gu m3="" r<="" td=""></acc_gu>
磁铁电源1回水过温 🧪	磁铁电源1入水压过	压 🧑 磁铁电源1流量欠流 🧑 <acc_gu m3="" r<="" td=""></acc_gu>
磁铁电源2回水过温	磁铁电源2入水压过	压 磁铁电源2流量欠流 ACC GU M3/t

2023.10 入腔功率0.8MW

- 高功率测试达到预期(略晚于INFN/PSI)
- FC对暗电流进行了初步测量

25

初步束流测试结果

首次观测到光电流信号 (ICT) 2024.12.13

暗电流

不同馈入功率下暗电流测量

束流电荷量与激光脉冲能量的关系

- FC测量暗电流
- FC测量暗电流+光电流

激光能量: 4000	法拉第筒积分:	拉第筒积分: 光电流 109 (192-83)(螺线管: 119-170)			
3500		光电流 184 (268-84)	(螺线管:112-160)		
3000	? ? ?	光电流274 (382-108)	(螺线管:112-160)		
2500		光电流 340(426-84)	(螺线管: 119-170)		
2000		光电流 381 (469-88)	(螺线管:119-170)		
1500		光电流432(522-90)	(螺线管: 119-170)		
1000		光电流449			
500		光电流466			
4700		光电流 12			

束流能量与梯度之间的关系

- 通过扫描可得到阴极梯度与
 束流能量的关系
- 能量测量的公式将二极铁边 缘场也计算入内后,修改如 下:

- $= \sqrt{0.18166I^2 0.511^2} 0.511$
- 目前测到的最大束流能量时 6.63 MeV,对应137 MV/m

束流能量扫相

- 高压285 kV, 分别对比低 电平3500, 3700, 3900 条件下的能量变化
- 在低于-40度的情况下, 由于能散偏大,测到的 能量不是中心能量,所 以结果偏高

- 经过对比,发现测量得到的CT电荷量扫相范围会比模拟的大约20度,而且CT没有绝对标准值
- FD的模拟扫相结果将管道的束流损失考虑进去,会与CT的模拟扫描有较大的差别,说明光电子 束中间即便加上螺线管磁场(是155A,约0.27 T)也有较大的束损

• Cav_out与CT的结果相互重合,说明电 子枪出口到CT是无电荷损失的

FD/CT 代表两个位置的剩余电荷量比例, 维持在30%附近

暗电流与螺线管磁场的变化趋势一致,需要进一步 修正暗电流模型来使得计算结果和模拟结果一致

测量结果当中,可以看到聚焦趋势是倾斜的,原因 是束流轨迹是倾斜的

调试过程中遇到的一些问题

功率源稳定性

- 根据功率源的使用状态有如下
 困难:
 - 打火统计尚未具备功能
 - 稳定性偏差,同时会带动电荷量和能量也会大幅度抖动(法拉第桶处的暗电流电荷量抖动范围约为±100pC)
- •建议:
 - 希望稳定性能够达到0.1%左右 (上海是0.04%)

低电平2000时, pick_up信号的分布情况, 其幅值 稳定性约为1.8%, 峰峰值达到了约10%

开环和闭环比较

不同功率下稳定性分析

低电平	入腔功率/MW	反射功率/MW	打火概率/%	功率稳定性 <i>σ</i> /%	幅值稳定性 <i>σ</i> /%	相位稳定性σ/%
4200	17.088	2.6	0.896	0.47	0.46	1.08
4000	15.5	2.16	0.534	0.67	0.48	1.7
3900	14.736	1.928	0.284	0.7	0.4	1.66
3700	13.26	1.638	0.047	0.8	0.43	0.6
3500	11.863	1.402	0.0	1.1	0.52	0.64
2000	3.878	0.414	0.0	2.82	1.98	1.79

偏转铁后屏幕所测束团位置抖动比较

2000(能量较低)

4500(能量较高)

整体研究布局 全C/高梯度

8.5 m

太赫兹相关应用研究

THz FEL做谱学测量

S. Takahashi, et al., Nature, 489, 409 (2012)

THz驱动的VO2的相性变化 а 70 0.9 60 0.8 50 0.7 40 delay (ps) 0.6 30 0.5 Time 20 0.4 10 0.3 0.2 0 0.1 -10 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Frequency (THz) b 0.48 150 💬 field Tē∳ 0.5 100 5 0.44 0 (MV cm 0.40 |₅₀ ģ Ĕ 0.36 20 40 60 80 0 Time (ps) 100 С 0.75 80 0.70 **∑** 60 0.65 F. 40 0.60 20 0.55 00 0 20 40 60 80 5 10 Time delay (ps) Time delay (ps)

Mengkun Liu, et al., Nature 487, 345 (2012)

THz波+电镜做成像

(2016)

2. C. Kealhofer, et al., Science, 352, 429 (2016) 42

紧凑型光源/ICS

The X-ray source of the MuCLS

Günther et al., J. Synch. Rad. 27, 1395 (2020), underlying CAD drawing provided by Lyncean Technologies Inc.

 $\mathcal{L}_0 = f_{\text{coll}} \frac{N_l N_e}{4\pi \sigma_r^2}$

欢迎大家合作开展基于MeV~数十MeV电子束流的研究!