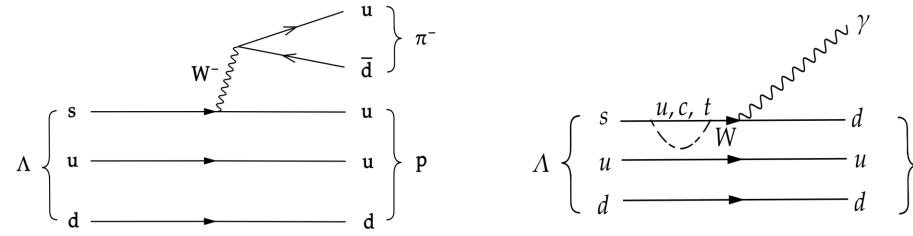
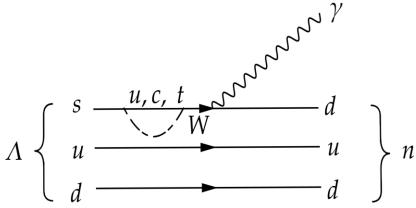


第十届手征有效场论研讨会 2025/10/18, 南京师范大学

Hyperon decays and CP violation


- **Polarization** of hyperon disentangled
- Most precise decay parameters obtained
- More CPV observable constructed


$$A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} , \quad B = \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}} .$$

$$A_{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0011 \text{ (10billion } J/\psi)$$

 $A_{\Sigma} = -0.004 \pm 0.037 \pm 0.010 \text{ (1.3 billion } J/\psi)$
 $A_{\Xi} = 0.006 \pm 0.013 \pm 0.006 \text{ (1.3 billion } J/\psi)$
 $\Delta \phi_{\Xi} = -0.005 \pm 0.014 \pm 0.003 \text{ (1.3 billion } J/\psi)$
 $\xi_{\Lambda}^{P} - \xi_{\Lambda}^{S} = (-1.1 \pm 2.1)^{\circ} \in \{-4.5^{\circ}, +2.1^{\circ}\} \text{ (90\% C.L.)}$

Hyperon decays and ChPT

- There are still **unsolved questions** in the domain of **low-q²** hyperon weak decays: the origin of the $\Delta I=1/2$ Rule; the S/P wave puzzle in decay amplitudes; the violation of the Hara Theorem
- The **Chiral perturbation theory** provides a useful tool to systematically analyze the interplay of the strong, weak, and EM interactions.
- The processes of interest include hyperon hadronic decays $\Lambda \to p\pi^-$ and $\Lambda \to n\pi^0$ and radiative decays $\Sigma^+ \to p\gamma$, $\Lambda \to n\gamma$, $\Xi^0 \to \Lambda\gamma$

$\Delta I = 1/2$ rule in Hyperon hadronic decay

• In $K \to \pi\pi$ decay, their amplitudes:

$$A(K^{+} \to \pi^{+}\pi^{0}) = \frac{3}{2}A_{2}e^{i\chi_{2}} \quad \Delta I = \frac{3}{2} \text{ transition} \qquad \frac{\operatorname{Re}(A_{0})}{\operatorname{Re}(A_{1})} \approx \frac{\sqrt{\mathcal{B}(K^{+} \to \pi^{+}\pi^{0})\tau_{K_{s}}}}{\sqrt{\mathcal{B}(K_{s} \to \pi^{+}\pi^{-})\tau_{K^{+}}}} = \sqrt{\frac{0.21 \cdot 0.1ns}{0.69 \cdot 12ns}} = \frac{1}{22}$$

$$A(K^{0} \to \pi^{+}\pi^{-}) = A_{0}e^{i\chi_{0}} + \frac{1}{\sqrt{2}}A_{2}e^{i\chi_{2}} \quad \Delta I = \frac{1}{2} \text{ transition}$$

- The $\Delta I = 1/2$ rule: the weak transitions changing isospin by 1/2 are enhanced over the 3/2 transitions in S-wave "50 Years of Quantum Chromodynamics"
- The $\Delta I = 1/2$ rule is also applicable in the decay of hyperons, e.g. $\Lambda \to p\pi^-$ and $\Lambda \to n\pi^0$

$$\begin{split} S(\Lambda_{-}) &= -\sqrt{\frac{2}{3}}\,S_{11}\,e^{\,i(\delta_{11}^S + \xi_1^S)} + \sqrt{\frac{1}{3}}\,S_{33}\,e^{\,i(\delta_{33}^S + \xi_3^S)}, \qquad S(\Lambda_0) = \sqrt{\frac{1}{3}}\,S_{11}\,e^{\,i(\delta_{11}^S + \xi_1^S)} + \sqrt{\frac{2}{3}}\,S_{33}\,e^{\,i(\delta_{33}^S + \xi_3^S)}, \\ P(\Lambda_{-}) &= -\sqrt{\frac{2}{3}}\,P_{11}\,e^{\,i(\delta_{11}^P + \xi_1^P)} + \sqrt{\frac{1}{3}}\,P_{33}\,e^{\,i(\delta_{33}^P + \xi_3^P)}, \qquad P(\Lambda_0) = \sqrt{\frac{1}{3}}\,P_{11}\,e^{\,i(\delta_{11}^P + \xi_1^P)} + \sqrt{\frac{2}{3}}\,P_{33}\,e^{\,i(\delta_{33}^P + \xi_3^P)}, \end{split}$$

 δ_i is the strong final-state interaction phase, ξ_i is the weak interaction phase

$\Delta I = 1/2$ rule in Hyperon hadronic decay

Three parameters fully describe the hyperon hadronic weak decays:

$$\Gamma = \frac{e^2 G_F^2}{\pi} (|S|^2 + |P|^2) \qquad \alpha_Y = \frac{2 \text{Re}(S^* P)}{|S|^2 + |P|^2} \qquad \phi_Y = \sin^{-1} \frac{\beta_Y}{\sqrt{1 - \alpha_Y^2}}$$

- The $\Delta I = 1/2$ and $\Delta I = 3/2$ amplitudes in Hyperon is related with **decay widths** and **decay** asymmetries. If there no $\Delta I = 3/2$ transition in Λ decay: $\frac{\alpha_0}{\alpha_-} = 1$, $\frac{\Gamma(\Lambda \to n\pi^0)}{\Gamma(\Lambda \to p\pi^-)} = 1/2$
- Why test $\Delta I = 1/2$ rule in Λ decay:
 - Test the $\Delta I = 1/2$ rule in both S-wave and **P-wave**: S_1/S_3 and P_1/P_3
 - $\Delta I = 3/2$ transition contributes in CPV of decay width

$$\Delta_{\mathrm{CP}} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = \frac{P_{1,1}P_{3,3}\sin\left(\xi_{1,1}^P - \xi_{3,3}^P\right)\sin\left(\delta_1^P - \delta_3^P\right)}{P_{1,1}^2 + S_{1,1}^2} + \frac{S_{1,1}S_{3,3}\sin\left(\xi_{1,1}^S - \xi_{3,3}^S\right)\sin\left(\delta_1^S - \delta_3^S\right)}{P_{1,1}^2 + S_{1,1}^2}$$

S/P wave puzzle in Hyperon hadronic decay

- S/P wave puzzle: the S wave in hyperon decay follows SU(3) symmetry, while the P wave doesn't
- Using the **ChPT approaches**, with updated decay parameters, the updated S-wave and P-wave are obtained, where the **P-wave** differs from previous calculations.

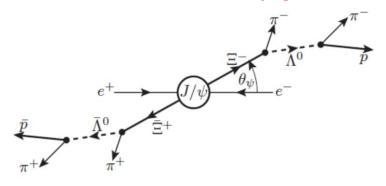
Sci. Bull. 67 (2022) 2298-2304
TABLE V. Experimental S- and P-wave hyperon non-leptonic decay amplitudes extracted from the most recent pdgLive [3], BESIII measurements [51], 52] and CLAS data [53].

Decay modes	B [3]	α_{π} [3, 51+53]	ϕ_{π} (°) [3, 52]	$s = A_S^{(I)}$	Expt)	$p = A_P^{(\text{Expt})} \vec{q} /$	$\overline{(E_f + m_f)}$
Decay modes	ם ש		$\psi_{\pi}()[z,z_{2}]$	This work	[49]	This work	[49]
$\Sigma^+ \to n\pi^+$	0.4831(30)	0.068(13)	167(20)	0.06(1)	0.06(1)	1.81(1)	1.81(1)
$\Sigma^- \to n \pi^-$	0.99848(5)	-0.068(8)	10(15)	1.88(1)	1.88(1)	-0.06(1)	-0.06(1)
$\Lambda \to p \pi^-$	0.639(5)	0.7462(88)	-6.5(35)	1.38(1)	1.42(1)	0.62(1)	0.52(2)
$\Xi^- \to \Lambda \pi^-$	0.99887(35)	-0.376(8)	0.6(12)	-1.99(1)	-1.98(1)	0.39(1)	0.48(2)
$\Sigma^+ o p \pi^0$	0.5157(30)	-0.982(14)	36(34)	-1.50(3)	-1.43(5)	1.29(4)	1.17(7)
$\Lambda \to n\pi^0$	0.358(5)	0.74(5)	•••	-1.09(2)	-1.04(1)	-0.48(4)	-0.39(4)
$\Xi^0 \to \Lambda \pi^0$	0.99524(12)	-0.356(11)	21(12)	1.62(10)	1.52(2)	-0.30(10)	-0.33(2)

The S/P wave puzzle limits the precision of SM predictions of hyperon CPV

$$\alpha_{Y} = \frac{2|S_{Y}||P_{Y}|\cos\left((\delta_{y\pi}^{P} - \delta_{y\pi}^{S}) + (\xi_{Y}^{P} - \xi_{Y}^{S})\right)}{|S_{Y}|^{2} + |P_{Y}|^{2}}$$

$$\alpha_{\bar{Y}} = -\frac{2|S_{Y}||P_{Y}|\cos\left((\delta_{y\pi}^{P} - \delta_{y\pi}^{S}) - (\xi_{Y}^{P} - \xi_{Y}^{S})\right)}{|S_{Y}|^{2} + |P_{Y}|^{2}}$$


$$\mathcal{A}_{CP}^{Y} \equiv \frac{\alpha_{Y} + \alpha_{\bar{Y}}}{\alpha_{Y} - \alpha_{\bar{Y}}} = -\sin\left(\delta_{y\pi}^{P} - \delta_{y\pi}^{S}\right)\sin\left(\xi_{Y}^{P} - \xi_{Y}^{S}\right)$$

$$\mathcal{B}_{CP}^{\Xi} \equiv \frac{\beta_{\Xi} + \beta_{\bar{\Xi}}}{\alpha_{\Xi} - \alpha_{\bar{\Xi}}} = \tan\left(\xi_{\Xi}^{P} - \xi_{\Xi}^{S}\right) \approx \xi_{\Xi}^{P} - \xi_{\Xi}^{S}$$

CPV observables	SM predictions	BESIII data
A_{CP}^{Λ}	$(-3 \sim 3) \times 10^{-5}$	$(-2.5 \pm 4.6 \pm 1.2) \times 10^{-3}$
A_{CP}^{Ξ}	$(0.5\sim6)\times10^{-5}$	$(6 \pm 13.4 \pm 5.6) \times 10^{-3}$
B_{CP}^{Ξ}	$(-3.8 \sim -0.3) \times 10^{-4}$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$

Hyperon Hadronic Weak Decay at e⁺e⁻ collider

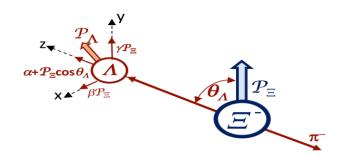
Typical reaction of $e^+e^- o J/\psi o \Xi^- \overline{\Xi}{}^+$

□ The first reaction: $J/\psi \to \Xi^-\overline{\Xi}^+$

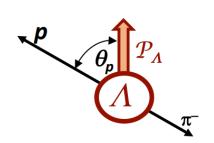
- Two helicity amplitudes $|J; J_z\rangle = |1; +1\rangle, |1; -1\rangle$
- Interference between them produces a θ_{ψ} -dependent production for Ξ hyperons that are spin-polarized:

$$\frac{1}{N} \frac{dN}{d\cos\theta_{\psi}} = \frac{3}{4\pi} \frac{1 + \alpha_{\psi}\cos^{2}\theta_{\psi}}{3 + \alpha_{\psi}}$$

$$\mathcal{P}_{\Xi} = \frac{\sqrt{1 - \alpha_{\psi}^{2}\sin\theta_{\psi}\cos\theta_{\psi}\sin\Delta\Phi}}{1 + \alpha_{\psi}\cos^{2}\theta_{\psi}},$$


- J/ψ produced almost at rest
- $\mathcal{Z}^{-}\bar{\mathcal{Z}}^{+}$ produced back-to-back, spin-correlated
- Decay occurs within a few cm of IP
- Low momentum π^- and π^+
- Clean topology, low background rate: 1:400

衰变道	$lpha_{\psi}$	$\Delta\Phi_{\psi}$	最大极化率(%)
$J/\psi o \Lambda ar{\Lambda}$	$0.475 \pm 0.002 \pm 0.003$	$0.752 \pm 0.004 \pm 0.007$	24.7
$J/\psi o \Sigma^+ ar{\Sigma}^-$	$-0.508 \pm 0.006 \pm 0.004$	$-0.270 \pm 0.012 \pm 0.009$	16.4
$J/\psi o \Xi^- \bar{\Xi}^+$	$0.586 \pm 0.012 \pm 0.010$	$1.213 \pm 0.046 \pm 0.016$	30.1
$J/\psi \to \Xi^0 \bar{\Xi}^0$	$0.514 \pm 0.006 \pm 0.015$	$1.168 \pm 0.019 \pm 0.018$	32.1


Hyperon Hadronic Weak Decay at e⁺e⁻ collider

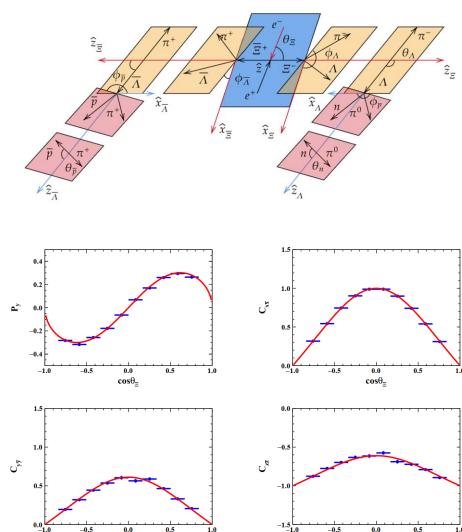
- □ The next two reactions: $\mathcal{Z}^- \to \Lambda \pi^- (\overline{\mathcal{Z}}^+ \to \overline{\Lambda} \pi^+)$
 - In Ξ^- and $\bar{\Xi}^+$ rest frames: $\frac{dN}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{\Xi} \mathcal{P}_{\Xi} \cos\theta_{\Lambda}$

$$\mathbf{P}_{\Lambda} = \frac{(\alpha_{\Xi} + \mathcal{P}_{\Xi} \cos \theta_{\Lambda}) \hat{\mathbf{z}} + \mathcal{P}_{\Xi} \beta_{\Xi} \hat{\mathbf{x}} + \mathcal{P}_{\Xi} \gamma_{\Xi} \hat{\mathbf{y}}}{1 + \alpha_{\Xi} \mathcal{P}_{\Xi} \cos \theta_{\Lambda}}$$

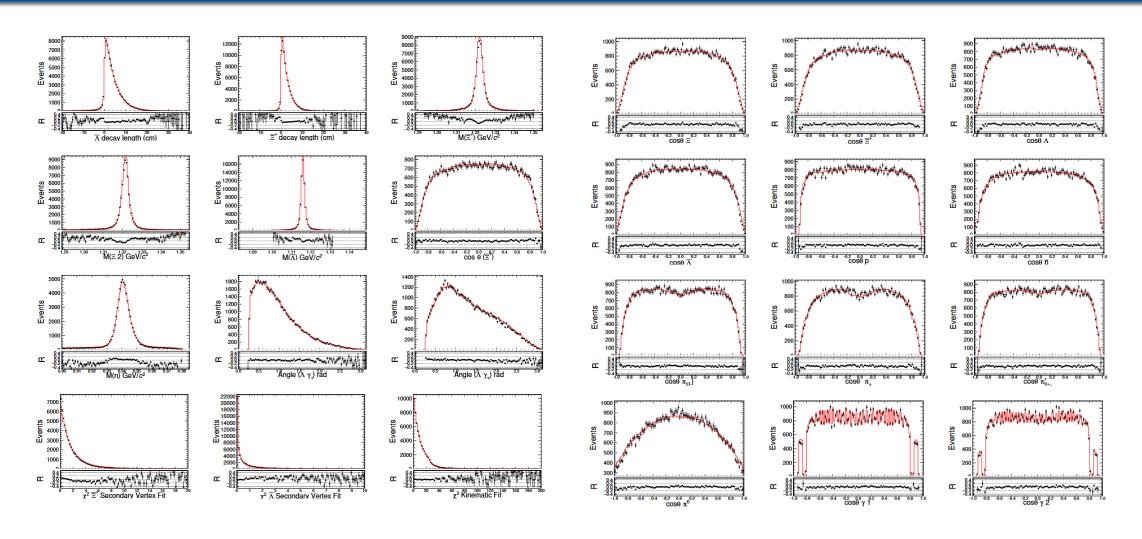
- The decay angle $\theta_{\Lambda}(\theta_{\overline{\Lambda}})$ relative to P_{Ξ} direction
- P_{Λ} is polarization of Λ with \hat{x} , \hat{y} , \hat{z} oriented in helicity frame
- α , β , γ are the Lee-Yang decay parameters of Ξ that can be determined with $\frac{dN}{d\cos\theta}$ and P_{Λ}
- □ The last two reactions: $\Lambda \to p\pi^-(\overline{\Lambda} \to \overline{n}\pi^0)$
 - In Λ and $\overline{\Lambda}$ rest frames: $\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} \mathcal{P}_{\Lambda} \cos\theta_p$.
 - The decay angle $\theta_p(\theta_{\bar{p}})$ relative to P_{Λ} direction
 - Only α of Λ can be determined since proton polarization is not measured.

A joint angular analysis of $J/\psi \to \Xi^- \overline{\Xi}^+$

$$\begin{split} e^+e^- &\to J/\psi \to \Xi^-\bar{\Xi}^+ \to \Lambda(\to n\pi^0)\pi^-\bar{\Lambda}(\to \bar{p}^-\pi^+)\pi^+, (\text{neutron channel}) \\ e^+e^- &\to J/\psi \to \Xi^-\bar{\Xi}^+ \to \Lambda(\to p^+\pi^-)\pi^-\bar{\Lambda}(\to \bar{n}\pi^0)\pi^+. (\text{anti-neutron channel}) \end{split}$$


$$\mathcal{W}(\xi;\omega) = \sum_{\mu,\, v=0}^{3} C_{\mu v} \sum_{\mu' \, v'=0}^{3} a^{\Xi}_{\mu \mu'} a^{\Xi}_{v v'} a^{\Lambda}_{\mu' 0} a^{\bar{\Lambda}}_{v' 0}$$

• Spin density matrix $(J/\psi \to \Xi^- \bar{\Xi}^+)$:


$$C_{\mu\bar{\nu}} = 2 \times \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta & 0 & \beta_{\psi} \sin\theta\cos\theta & 0 \\ 0 & \sin^{2}\theta & 0 & \gamma_{\psi} \sin\theta\cos\theta \\ -\beta_{\psi} \sin\theta\cos\theta & 0 & \alpha_{\psi} \sin^{2}\theta & 0 \\ 0 & -\gamma_{\psi} \sin\theta\cos\theta & 0 & -(\alpha_{\psi} + \cos^{2}\theta) \end{pmatrix}$$
$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi)$$

• For $\frac{1}{2}^+ \to \frac{1}{2}^+ + 0^- \text{decay } (\Xi^- \to \Lambda \pi^-)$:

$$a_{h}^{\Xi} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \cos \phi \sin \theta & \gamma \cos \theta \cos \phi - \beta \sin \phi & -\beta \cos \theta \cos \phi - \gamma \sin \phi & \sin \theta \cos \phi \\ \alpha \sin \theta \sin \phi & \beta \cos \phi + \gamma \cos \theta \sin \phi & \gamma \cos \phi - \beta \cos \theta \sin \phi & \sin \theta \sin \phi \\ \alpha \cos \theta & -\gamma \sin \theta & \beta \sin \theta & \cos \theta \end{pmatrix}$$

A joint angular analysis of $J/\psi o \Xi^{-}\overline{\Xi}^{+}$

The fit yields 143973±414 signal events and a purity of 91.2%. Good consistence between data and simulation

A joint angular analysis of $J/\psi o \mathcal{Z}^{-}\overline{\mathcal{Z}}^{+}$

PRL 132, 101801(2024)

- **Production parameters** are consistent with previous results, verifying the polarization and spin correlation.
- Precision of α_0 and $\overline{\alpha}_0$ are improved by factor of 4 and 1.7.
- Strong and weak-phase difference are measured.

$$\begin{split} (\delta_P-\delta_S)_{\rm SM}&=(1.9\pm4.9)\times10^2~{\rm rad}\\ (\xi_P-\xi_S)_{\rm SM}&=(1.8\pm1.5)\times10^4~{\rm rad}\\ (\delta_P-\delta_S)_{\rm HyperCP}&=(10.2\pm3.9)\times10^2~{\rm rad} \end{split}$$

• Four CP observables are constructed from decay parameters.

	<u>'</u>	'NL 132, 101001 (202
Parameters	This work	Previous result
$lpha_{J/\psi}$	$0.611 \pm 0.007^{+0.013}_{-0.007}$	$0.586 \pm 0.012 \pm 0.010$
$\Delta\Phi_{J/\psi}$ (rad)	$1.30 \pm 0.03^{+0.02}_{-0.03}$	$1.213 \pm 0.046 \pm 0.016$
$lpha_{\Xi}$	$-0.367 \pm 0.004^{+0.003}_{-0.004}$	$-0.376 \pm 0.007 \pm 0.003$
ϕ_Ξ (rad)	$-0.016 \pm 0.012^{+0.004}_{-0.008}$	$0.011 \pm 0.019 \pm 0.009$
$ar{lpha}_{\Xi}$	$0.374 \pm 0.004^{+0.002}_{-0.004}$	$0.371 \pm 0.007 \pm 0.002$
$ar{\phi}_\Xi$ (rad)	$0.010 \pm 0.012^{+0.002}_{-0.013}$	$-0.021 \pm 0.019 \pm 0.007$
$lpha_{\Lambda-}$	$0.764 \pm 0.008^{+0.005}_{-0.006}$	$0.7519 \pm 0.0036 \pm 0.0024$
$lpha_{\Lambda+}$	$-0.774 \pm 0.009^{+0.005}_{-0.005}$	$-0.7559 \pm 0.0036 \pm 0.0030$
$lpha_{\Lambda0}$	$0.670 \pm 0.009^{+0.009}_{-0.008}$	0.75 ± 0.05
$ar{lpha}_{\Lambda0}$	$-0.668 \pm 0.008^{+0.006}_{-0.008}$	$-0.692 \pm 0.016 \pm 0.006$
$\delta_P\!-\!\delta_S$ (rad)	$0.033 \pm 0.020^{+0.008}_{-0.012}$	$-0.040 \pm 0.033 \pm 0.017$
$\xi_P\!-\!\xi_S$ (rad)	$0.007 \pm 0.020^{+0.018}_{-0.005}$	$0.012 \pm 0.034 \pm 0.008$
A_{CP}^{Ξ}	$-0.009 \pm 0.008^{+0.007}_{-0.002}$	$0.006 \pm 0.013 \pm 0.006$
$\Delta\phi^\Xi_{ ext{CP}}$ (rad)	$-0.003 \pm 0.008^{+0.002}_{-0.007}$	$-0.005 \pm 0.014 \pm 0.003$
A_{CP}^-	$-0.007 \pm 0.008^{+0.002}_{-0.003}$	$-0.0025 \pm 0.0046 \pm 0.0012$
A_{CP}^0	$0.001 \pm 0.009^{+0.005}_{-0.007}$	-
$A_{ ext{CP}}^{\Lambda}$	$-0.004 \pm 0.007^{+0.003}_{-0.004}$	-
$lpha_{\Lambda0}/lpha_{\Lambda-}$	$0.877 \pm 0.015^{+0.014}_{-0.010}$	1.01 ± 0.07
$\bar{\alpha}_{\Lambda 0}/\alpha_{\Lambda +}$	$0.863 \pm 0.014^{+0.012}_{-0.008}$	$0.913 \pm 0.028 \pm 0.012$

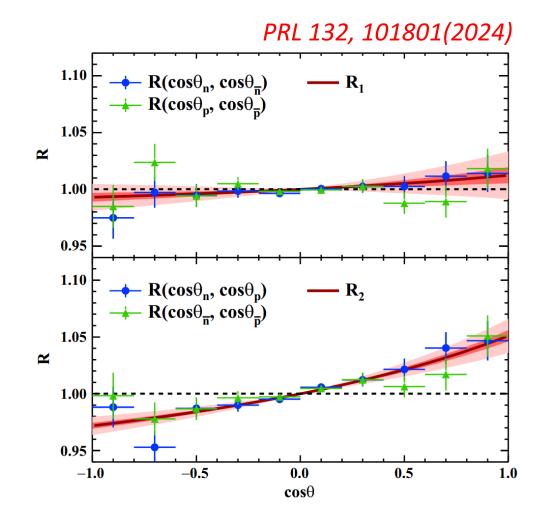
Disparity in Λ decay that reveals $\Delta I = 1/2$ rule

Test of CP violation

$$R\left(\cos\theta_{p},\cos\theta_{\bar{p}}\right) = \frac{1 + \alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}{1 + \alpha_{\Lambda+}\bar{\alpha}_{\Xi}\cos\theta_{\bar{p}}}$$

Test of $\Delta I = 1/2$ rule

$$R\left(\cos\theta_{n},\cos\theta_{p}\right) = \frac{1 + \alpha_{\Lambda0}\alpha_{\Xi}\cos\theta_{n}}{1 + \alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}$$


The average of the ratio

$$\langle \alpha_{\Lambda 0} \rangle / \langle \alpha_{\Lambda -} \rangle = 0.870 \pm 0.012^{+0.011}_{-0.010}$$

Consistent with kaon decay

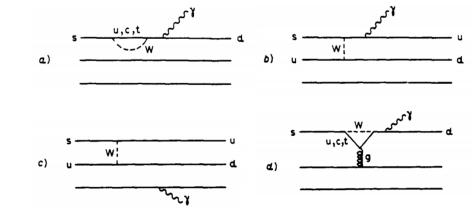
$$S_1/S_3 = 28.4 \pm 1.3^{+1.1}_{-1.0} \pm 3.9$$

$$P_1/P_3 = -13.0 \pm 1.4^{+1.1}_{-1.2} \pm 0.7$$

Observed for the first time, different from S-wave

Weak Radiative Hyperon Decay

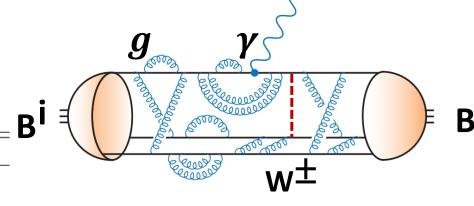
- The radiative decay was thought to be a simple reaction since it is free of final-state interaction.
- Effective Lagrangian


$$\mathcal{L} = \frac{eG_F}{2}\bar{B}_f(a^{PC} + b^{PV}\gamma_5)\sigma^{\mu\nu}B_iF_{\mu\nu}$$

• Observables:

$$\Gamma = \frac{e^2 G_F^2}{\pi} \left(|a|^2 + |b|^2 \right) \cdot \left| \vec{k} \right|^3,$$

$$\alpha_{\gamma} = \frac{2 \operatorname{Re}(ab^*)}{|a|^2 + |b|^2}$$


- The "Hara theorem":
 - Focusing on single quark transition operator for $s \rightarrow d\gamma$ while the remaining two quarks are assumed to be spectators.
 - The U-spin properties of the weak and EM Hamiltonian imply that the PV part of the radiative weak decay vanishes in U-spin symmetry
 - For a U-spin doublet such as p, Σ^+ , or Σ^- , Ξ^- , Hara theorem requires the **PV amplitudes vanish**

Theoretical development for WRHD

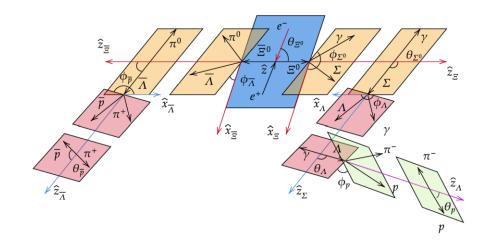
Non-pQCD effect plays an essential role, low energy effective theories needed

Decay modes	Data [19–21, 32, 33]	NRCQM [12]	LFQM [13]	EOMS χ PT [14]
$\Lambda \to n\gamma$	-0.16(10)(5)	-0.67(6)	-0.25	[-0.43, 0.15]
$\Sigma^+ \to p \gamma$	-0.652(56)(20)	-0.58(6)	-0.1	[-0.32, -0.27]
$\Sigma^0 \to n \gamma$	• • •	0.37(4)	-0.22	[-0.70, 0.70]
$\Xi^0 o \Lambda \gamma$	-0.741(62)(19)	0.72(11)	0.23	[-0.83, -0.59]
$\Xi^0 o \Sigma^0 \gamma$	-0.69(6)	0.33(4)	-0.15	[-0.74, -0.63]
$\Xi^- \to \Sigma^- \gamma$	1.0(13)		•••	[-0.18, 0.38]

Prog.Part.Nucl.Phys. 91 (2016) 1-100

• The WRHD provide low-energy constants constraints, that will bring inputs for Semi-leptonic decay and weak hadronic decay

Sci.Bull. 67 (2022) 2298-2304

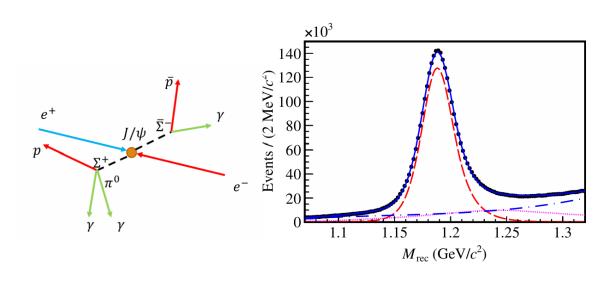

Weak Hadronic Decay Weak Radiative Decay Semi-leptonic Decay Baryon Magnetic Moment

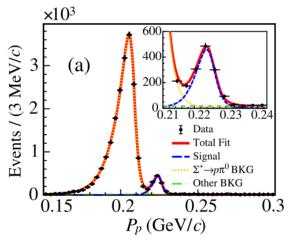
Joint angular analysis for WRHD at e⁺e⁻ collider

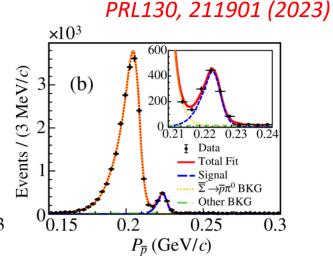
$$W = \sum_{\mu, \nu=0}^{3} \sum_{\mu', \nu', \rho=0}^{3} C_{\mu\nu} b_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\bar{\Xi}} b_{\mu'\rho}^{\Sigma} a_{\nu'0}^{\bar{\Lambda}} a_{\rho 0}^{\Lambda}$$

For $J/\psi \to \Xi^0 \overline{\Xi}^-$

$$C_{\mu\nu} = \begin{pmatrix} 1 + \alpha_{\psi} \cos^{2}\theta_{\Xi^{0}} & 0 & \beta_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 \\ 0 & \sin^{2}\theta_{\Xi^{0}} & 0 & \gamma_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} \\ -\beta_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 & \alpha_{\psi} \sin^{2}\theta_{\Xi^{0}} & 0 \\ 0 & -\gamma_{\psi} \sin\theta_{\Xi^{0}} \cos\theta_{\Xi^{0}} & 0 & -(\alpha_{\psi} + \cos^{2}\theta_{\Xi^{0}}) \end{pmatrix}$$




For $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 0^-$ decay $(\Xi^0 \rightarrow \Lambda \pi^0)$


$$a_{\mu\mu'} = \begin{pmatrix} 1 & 0 & 0 & \alpha \\ \alpha \cos \phi \sin \theta & \gamma \cos \phi \cos \theta - \beta \sin \phi & -\beta \cos \phi \cos \theta - \gamma \sin \phi & \cos \phi \sin \theta \\ \alpha \sin \phi \sin \theta & \beta \cos \phi + \gamma \cos \theta \sin \phi & \gamma \cos \phi - \beta \cos \theta \sin \phi & \sin \phi \sin \theta \\ \alpha \cos \theta & -\gamma \sin \theta & \beta \sin \theta & \cos \theta \end{pmatrix}$$

For
$$\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ + 1^- decay (\Xi^0 \rightarrow \Sigma^0 \gamma)$$

$$b_{\nu\nu'} = \begin{pmatrix} 1 & 0 & 0 & -\alpha \\ \alpha\cos\phi\sin\theta & 0 & 0 & -\cos\phi\sin\theta \\ \alpha\sin\theta\sin\phi & 0 & 0 & -\sin\theta\sin\phi \\ \alpha\cos\theta & 0 & 0 & -\cos\theta \end{pmatrix}$$

Double-tag method:

$$\begin{split} N_{ST} &= N_{J/\psi \to \Sigma^{+}\bar{\Sigma}^{-}} \times \mathcal{B}_{\bar{\Sigma}^{-} \to \bar{p}\pi^{0}} \times \varepsilon_{ST} \\ N_{DT} &= N_{J/\psi \to \Sigma^{+}\bar{\Sigma}^{-}} \times \mathcal{B}_{\bar{\Sigma}^{-} \to \bar{p}\pi^{0}} \times \mathcal{B}_{\Sigma^{+} \to p\gamma} \times \varepsilon_{DT} \\ \mathcal{B}_{\Sigma^{+} \to p\gamma} &= \frac{N_{DT}}{N_{ST}} \times \frac{\varepsilon_{ST}}{\varepsilon_{DT}} \end{split}$$

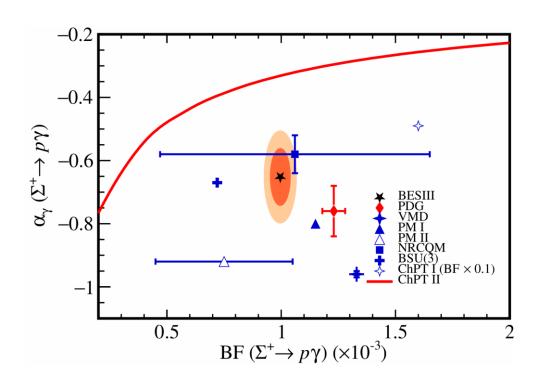
Modes	$\sum^+ \to p\gamma$	$ar{\Sigma}^- o ar{p} \gamma$
ST Yield	2177771 ± 2285	2509380 ± 2301
ST Eff (%)	39.02	44.31
DT Eff (%)	21.16	23.20
Individual BF	$(1.007 \pm 0.032) \times 10^{-3}$	$(0.994 \pm 0.030) \times 10^{-3}$
Simultaneous BF	(0.997 ± 0.0)	$(0.022) \times 10^{-3}$

$$\mathcal{L} = \prod_{i=1}^{N} \frac{\mathcal{W}_{i}(\xi, H)}{\mathcal{N}} \qquad \mathcal{N} = \frac{1}{N_{\text{MC}}} \sum_{j=1}^{N_{\text{MC}}} \mathcal{W}_{i}^{\text{MC}}(\xi, H)$$

- • \mathcal{W}_i : differential cross section
- $\bullet \mathcal{N}$: normalization factor based on PHSP MC

$$\bullet H = \left(\alpha_{J/\psi}, \Delta \Phi_{\Psi}, \alpha_{\Sigma^{+} \to p\gamma}, \alpha_{\overline{\Sigma}^{-} \to \overline{p}\pi^{0}}\right)$$

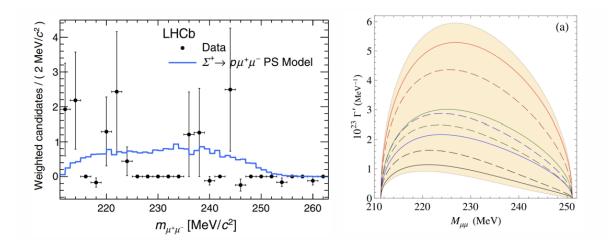
$$egin{align} M_1(\cos heta_{\Sigma^+}) &= rac{m}{N} \sum_{i=1}^{N_k} \cos heta_{ar{p}}^i \cos heta_p^i, \ M_2(\cos heta_{\Sigma^+}) &= rac{m}{N} \sum_{i=1}^{N_k} \sin heta_p^i \sin heta_p^i, \end{align}$$


Parameter	value
$lpha_{\psi}$	-0.508 ± 0.006
$lpha_{\psi} \ \Delta \Phi$	-0.270 ± 0.012
$lpha_{\Sigma^+ o p\pi^0}$	-0.980 ± 0.017
$lpha_{\Sigma^+ o p \gamma}$	Iterated from this analysis

PRL130, 211901 (2023)

Processes	$\Sigma^+ \to p \gamma$	$ar{\Sigma}^- o ar{p} \gamma$
Individual fit	-0.587 ± 0.082	0.710 ± 0.076
Simultaneous fit	-0.651 =	± 0.056

PRL130, 211901 (2023)


Mode	$\Sigma^+ o p \gamma$	$\bar{\Sigma}^- \to \bar{p}\gamma$
$N_{ m ST}^{ m obs}$	2177771 ± 2285	2509380 ± 2301
$\varepsilon_{\mathrm{ST}}$ (%)	39.00 ± 0.04	44.31 ± 0.04
$N_{ m DT}^{ m obs}$	1189 ± 38	1306 ± 39
$\varepsilon_{\mathrm{DT}}$ (%)	21.16 ± 0.03	23.20 ± 0.03
Individual BF (10^{-3})	1.005 ± 0.032	0.993 ± 0.030
Simultaneous BF (10^{-3})	0.996 ± 0.0	021 ± 0.018
Individual α_{γ}	-0.587 ± 0.082	0.710 ± 0.076
Simultaneous α_{γ}	$-0.651 \pm 0.$	056 ± 0.020

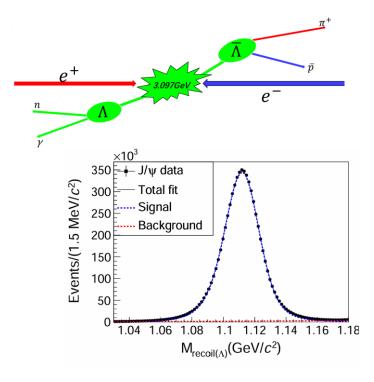
- The accuracies of the BF and α_{γ} are improved by 78% and 34%
- The measured BF is lower than the world average value by 4.25
- The accurate result will provide input and constraints for ChPT

PRL130, 211901 (2023)

Input for new physics in $\Sigma^+ o p l^+ l^-$

- Smoke screen of new physics in $\Sigma + \to p\mu + \mu \text{decay}$ PRL94 (2005) 021801, PRL120 (2018) 22, 22180
- Experiment results of WRHDs provide SM expectations on such decays narrowing the range for NP!

CP observables:


$$\Delta_{CP} = \frac{\mathcal{B}_{+} - \mathcal{B}_{-}}{\mathcal{B}_{+} + \mathcal{B}_{-}} = 0.006 \pm 0.011_{\text{stat.}} \pm 0.004_{\text{syst.}},$$

$$A_{CP} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}} = 0.095 \pm 0.087_{\text{stat.}} \pm 0.018_{\text{syst.}}.$$

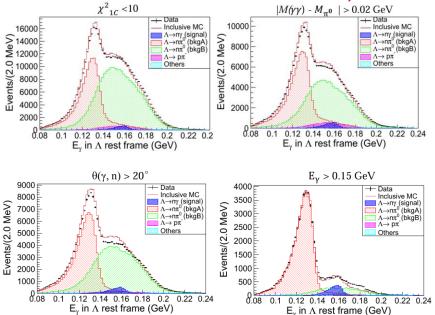
- May be significantly enhanced by NP up to O 10 % (PRL109 (2012), 171801, JHEP 01 (2013) 027, JHEP 04 (2017) 027, JHEP 08 (2017) 09
- Extensive experimental studies on K, D and B meson radiative decays

SM on $\Sigma^+ o p\gamma$	Δ_{CP}	A_{CP}
PhysRevD.51.2271	$10^{-5} - 10^{-4}$	
Commun. Theor. Phys. 19.475		$10^{-5} - 10^{-4}$
arxiv:2312.17568	2×10^{-5}	

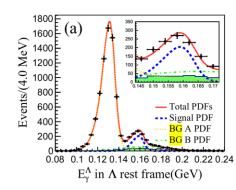
WRHD process $\Lambda \rightarrow n\gamma$

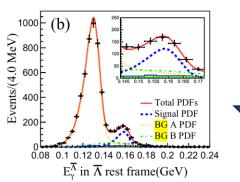
> Dominant background:

$$\Lambda \rightarrow n\pi^0$$


- BKG A: photon candidate is from π^0 decay.
- BKG B: photon candidate is not from π^0 decay.

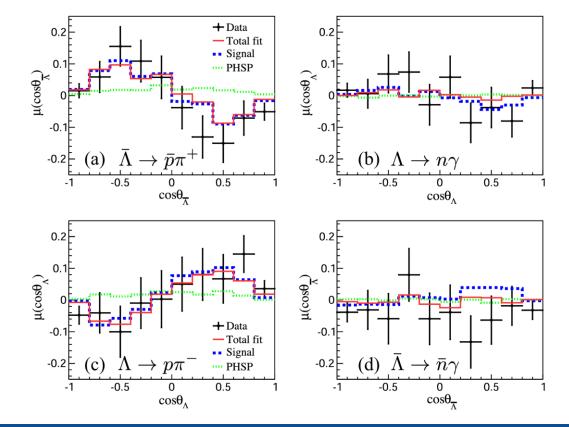
Sources of noise photons:


- ☐ (Anti-)neutron-related secondary shower;
- Mis-identification of photons and neutron showers;
- Noise showers from beam-BKG.

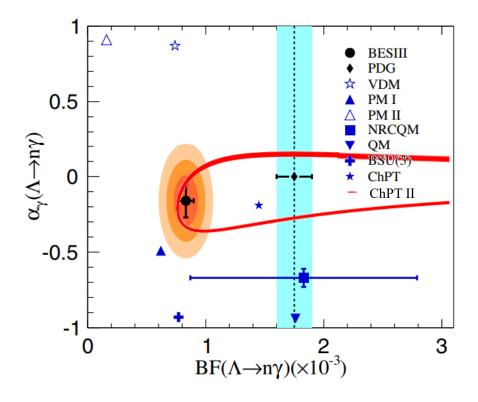

Decay mode	$\Lambda o n \gamma$	$\bar{\Lambda} ightarrow \bar{n} \gamma$
$N_{\rm ST}~(\times 10^3)$	6853.2 ± 2.6	7036.2 ± 2.7
$\varepsilon_{\mathrm{ST}}$ (%)	51.13 ± 0.01	52.53 ± 0.01
$N_{ m DT}$	723 ± 40	498 ± 41
$\varepsilon_{\mathrm{DT}}$ (%)	6.58 ± 0.04	4.32 ± 0.03
BF ($\times 10^{-3}$)	$0.820 \pm 0.045 \pm 0.066$	$0.862 \pm 0.071 \pm 0.084$
	$0.832 \pm 0.038 \pm 0.054$	
$lpha_{\gamma}$	$-0.13 \pm 0.13 \pm 0.03$	$0.21 \pm 0.15 \pm 0.06$
	-0.16 ± 0	0.10 ± 0.05

PRL 129, 212002 (2022)

After further BDT selection

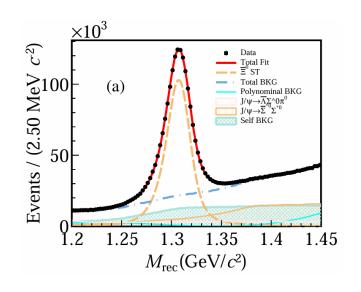


WRHD process $\Lambda \rightarrow n\gamma$

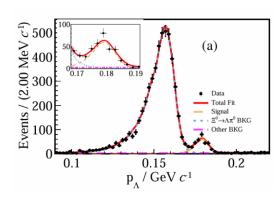

$$-\ln \mathcal{L}_{sig} = -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bkgA} + \ln \mathcal{L}_{bkgB}$$

- □ Contributions of BKG A / B should be subtracted.
- $-\ln \mathcal{L} = -\sum_{i=1}^{i=N} \ln \frac{\omega(\xi, \alpha_{\gamma})}{S}$
- BKG A and BKG B contributions are estimated by DIY MC with same numbers in data

 α_{ψ} (J/ ψ decay parameter) = 0.461, $\Delta\Phi$ (helicity phase) = 0.74, $\alpha_{1}(\Lambda \rightarrow p\pi^{-}) = 0.75$, $\alpha_{V}(\overline{\Lambda} \rightarrow \gamma \overline{n}) = ?$


PRL 129, 212002 (2022)

- First measurement on α_{γ}
- 5.6σ deviation of BF from world average value

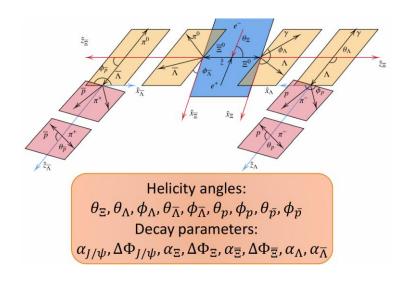

WRHD process $\Xi^0 \to \Lambda \gamma$

Events / $(3.00 \text{ MeV } c^{-1})$

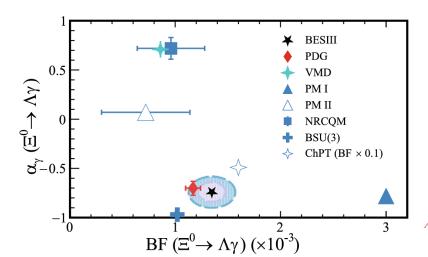
Modes	$ig \Xi^0 o \Lambda \gamma$	$\bar{\Xi}^0 o \bar{\Lambda} \gamma$	
ST Yield	1400541 ± 1989	1611216 ± 2111	
$arepsilon_{ ext{ST}}\left(\% ight)$	17.61 ± 0.01	19.77 ± 0.01	
$arepsilon_{ m DT}\left(\% ight)$	4.43 ± 0.02	4.77 ± 0.02	
Individual BF	$(1.391 \pm 0.093) \times 10^{-3}$	$(1.344 \pm 0.099) \times 10^{-3}$	
Simultaneous BF	$(1.379 \pm 0.068) \times 10^{-3}$		
Correction factor	1.032	1.014	
Corrected individual BF	$(1.348 \pm 0.090) \times 10^{-3}$	$(1.326 \pm 0.098) \times 10^{-3}$	
Corrected simultaneous BF	(1.347 ± 0.0)	$066) \times 10^{-3}$	

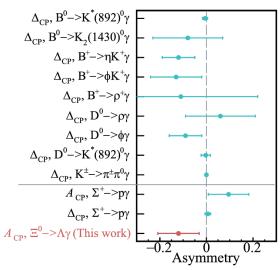


 $\frac{0.15}{\rm p_{\Lambda}^{0.2}/\,GeV}$ $\frac{0.2}{c^{-1}}$

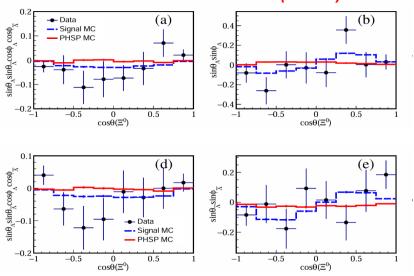

→ Data $= \Xi^0 \rightarrow \Lambda \gamma \times 10$ $= \Xi^0 \rightarrow \Lambda \pi^0$

Other Bkg $\overline{\Lambda}\Sigma^0\pi^0 + c.c.$


0.25



WRHD process $\Xi^0 \to \Lambda \gamma$

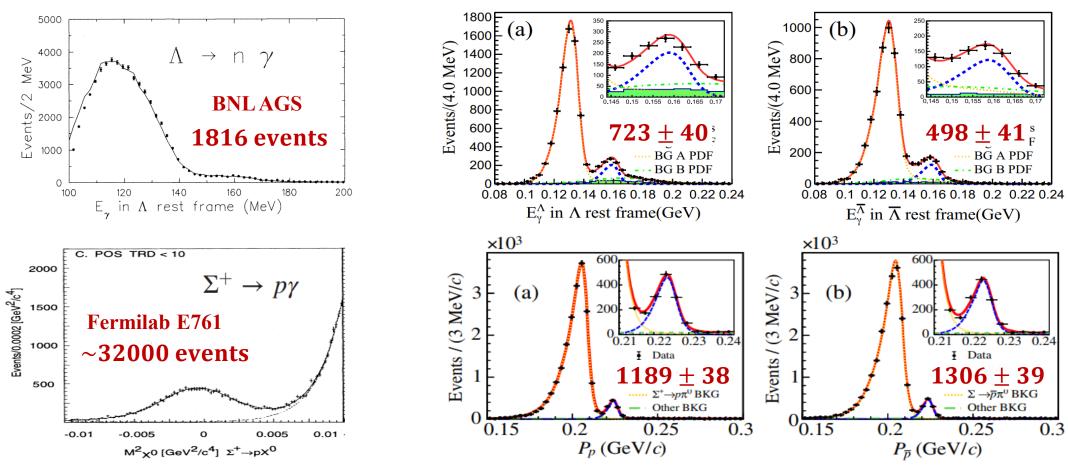


$lpha_\Psi$	0.514		
$\Delta\Phi$	1.168		
$lpha_{\Xi^0 o\Lambda\gamma}$	this analysis		
$lpha_{ar{\Xi}^0 ightarrow ar{\Lambda} \gamma}$	this analysis		
$lpha_{\Xi^0 o \Lambda \pi^0}$	-0.375		
$\Delta\Phi_{\Xi^0 o\Lambda\pi^0}$	0.005		
$\alpha_{\bar{\Xi}^0 ightarrow \bar{\Lambda}\pi^0}$	0.379		
$\Delta\Phi_{ar{\Xi}^0 oar{\Lambda}\pi^0}$	-0.005		
$lpha_{\Lambda}$	0.755		
$lpha_{ar{\Lambda}}$	-0.745		

Sci.Bull. 70 (2025) 454-459

Processes	$\Xi^0 o \Lambda \gamma$	$\bar{\Xi}^0 o \bar{\Lambda} \gamma$	
Individual fit	-0.652 ± 0.092	0.830 ± 0.080	
Simultaneous fit	-0.741 ± 0.062		

$$A_{\text{CP}} = rac{lpha_{\gamma} + ar{lpha}_{\gamma}}{lpha_{\gamma} - ar{lpha}_{\gamma}} = -0.120 \pm 0.084_{\text{stat.}} \pm 0.029_{\text{syst.}}$$


HWRD at fix-target experiments

• Fixed target experiments govern the results in 1965-2010 (~23 papers from over 5 experiments)

$\Sigma^+ o p \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
2023	BESIII	$0.996 \pm 0.021 \pm 0.018$	$-0.652 \pm 0.056 \pm 0.020$		
1995	E761	1.20 ± 0.08	-		
1992	SPEC	-	-0.720 ± 0.086		
1989	CNTR	1.45 ± 0.31	-		
1987	CNTR	1.23 ± 0.20	-		
1985	CNTR	1.27 ± 0.18	-		
1980	HBC	1.09 ± 0.20	-0.53 ± 0.36		
1969	HBC	1.1 ± 0.2	-		
1969	HBC	1.42 ± 0.26	-1.03 ± 0.52		
1965	HBC	1.9 ± 0.4	-		
$\Lambda \to n \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
2022	BESIII	$0.846 \pm 0.039 \pm 0.052$	$-0.160\pm0.101\pm0.046$		
1994	E761	-1.75 ± 0.15			
1992	SPEC	1.78 ± 0.24	-		

$\Xi^0 o \Lambda \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
2010	NA48	-	-0.704 ± 0.064		
2004	NA48	1.17 ± 0.09	-0.78 ± 0.18		
2000	NA48	1.91 ± 0.34	-		
1990	SPEC	1.06 ± 0.18	-0.43 ± 0.44		
		$\Xi^0 o \Sigma^0 \gamma$			
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
2010	NA48	-	-0.729 ± 0.076		
2001	KTEV	3.34 ± 0.09	-0.63 ± 0.09		
2000	NA48	3.16 ± 0.76	-		
1989	SPEC	3.56 ± 0.42	0.20 ± 0.32		
		$\Xi^- \to \Sigma^- \gamma$			
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
1994	E761	0.122 ± 0.023	-		
1987	SPEC	0.227 ± 0.102	-		
$\Omega^- \to \Xi^- \gamma$					
时间	实验名或实验方案	分支比(×10 ⁻³)	α_{γ}		
1994	E761	< 0.46	-		
1984	SPEC	< 0.22	-		
1979	SPEC	< 0.31	-		

HWRD at fix-target and e^+e^- and Experiments

• Hyperons at e^+e^- : less statistics compare with large flux hyperon beam with polarization, but with better precision, charge-conjugate channels

The power of quantum correction and joint angular analysis

More BESIII results of HWRD are coming.....

- \triangleright Study of $\Xi^0 \rightarrow \gamma \Sigma^0$
- \triangleright Study of $\Xi^- \rightarrow \gamma \Sigma^-$
- \triangleright Study of $\Omega^- \rightarrow \gamma \Xi^-$
- \triangleright Study of $\Sigma^0 \rightarrow \gamma n$
- ightharpoonup Study of $\Sigma^+ \to pe^+e^-$
- ightharpoonup Study of $\Sigma^0 \to \Lambda e^+ e^-$
- **>** ...

Decay modes	Data [19–21, 32, 33]	NRCQM [12]	LFQM [13]	EOMS χ PT [14]
$\Lambda \to n\gamma$	-0.16(10)(5)	-0.67(6)	-0.25	[-0.43, 0.15]
$\Sigma^+ \to p\gamma$	-0.652(56)(20)	-0.58(6)	-0.1	[-0.32, -0.27]
$\Sigma^0 \to n \gamma$		0.37(4)	-0.22	[-0.70, 0.70]
$\Xi^0 \to \Lambda \gamma$	-0.741(62)(19)	0.72(11)	0.23	[-0.83, -0.59]
$\Xi^0 \to \Sigma^0 \gamma$	-0.69(6)	0.33(4)	-0.15	[-0.74, -0.63]
$\Xi^- \to \Sigma^- \gamma$	1.0(13)			[-0.18, 0.38]

Chin.Phys.Lett. 42, 032401 (2025)

Summary

- In addition to the hyperon CP violation tests, BESIII also conducted extensive studies on hyperon weak decays providing inputs to long-standing challenges at low q^2 region, such as. $\Delta I=1/2$ rule, S/P puzzle and Hara theorem.
- ChPT provides important interpretation to experimental results, offering a unified framework to understand the dynamics of hyperon weak decays.
- Further dedicated analyses and theoretical efforts are underway, which will continue to deepen the understanding of hyperon decays, and help provide better predication for hyperon CP violation.

