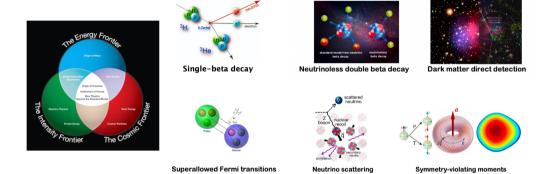
Advances in Modeling Nuclear Matrix Elements for New Physics Research

Jiangming Yao (尧江明)

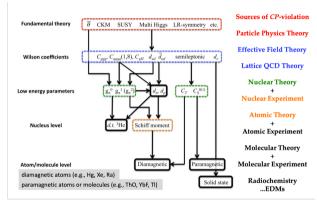
School of Physics and Astronomy, Sun Yat-sen University 中山大学物理与天文学院

第十届手征有效场论研讨会, Oct. 18, 2025, Nanjing, China


Outline

- Introduction
- 2 Charge-parity violation and atomic EDMs
- 3 Lepton-number violation and $0
 u\beta\beta$ decay
- Summary and outlook

Searching for new physics at low-energy scales



- **Open questions**: matter–antimatter asymmetry, new CP violation, Lepton-number violation, Majorana neutrino mass, etc
- Low-energy scales probes: (atomic) EDMs, $0\nu\beta\beta$ decay, etc.
- Physical interretation: nuclear matrix elements as a "bridge" connecting measurements and new physics.

Charge-parity violation and atomic EDMs

- The sources of charge-parity violation (CPV) within the SM (the complex phase of the CKM matrix in weak interactions and the θ term in QCD) are not sufficient to explain the observed baryon asymmetry of the universe.
- Hypothetical new sources of CPV beyond standard model (BSM), such as SUSY, multi-Higgs models, and LR-symmetry models.

T. Chupp, et al., Rev. Mod. Phys. 91, 015001 (2019); credit to Jaideep Singh.

Observation of any sizable EDMs of elementary or composite particles would indicate new CP violation beyond the SM, potentially solving the baryon asymmetry problem.

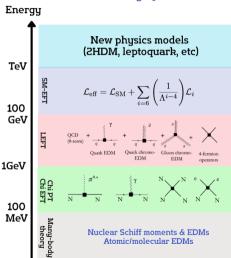
CP violation in chiral EFT

 At low-energy scales, chiral Lagrangian constrained by the symmtries of QCD

$$\mathcal{L}_{\textit{QCD}}
ightarrow \mathcal{L}_{\chi \textit{EFT}} = \mathcal{L}_{\textit{NN}} + \mathcal{L}_{\pi \textit{NN}} + \mathcal{L}_{\pi} + \cdots$$

• Systematic expansion in the power of

$$Q/\Lambda_\chi \simeq m_\pi/\Lambda_\chi$$


Each terms comes with an unknown LEC.

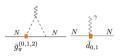
• Extension to include CP-violating terms

$$\mathcal{L}_{\chi \mathsf{EFT}} = \mathcal{L}_{\mathsf{PCTC}} + \mathcal{L}_{\mathsf{PVTV}} + \cdots$$

J. de Vries et al., arXiv:2001.09050 [nucl-th]

CP-violating operators

CP violating operators at low-energy scales and EDMs


electron EDM

semileptonic eN interaction

nucleon EDMs

nuclear forces

EDMs of atoms and molecules

$$d_i = \sum_{c_j} lpha_{i,c_j} c_j = lpha_{i,d_e} d_e + lpha_{i,C_S} C_S + \dots$$

atomic and nuclear structure factors

 $\alpha_{i,c_j} \in \{W_{d,S}, a_{0,1,2}, \cdots\}$ Large model dependence

Low-energy parameters

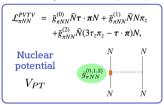
$$c_j \in \{d_e, C_{S,P,T}, d_N, \bar{g}_{\pi}^{(0,1,2)}, \bar{C}_{1,2}\}$$

S. Degenkolb et al., arXiv2403.02052 [hep-th]

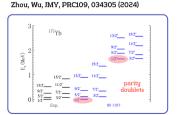
System i	Measured d_i [e cm]	Upper limit on $ d_i $ [e cm]	Reference
n	$(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \cdot 10^{-26}$	$2.2 \cdot 10^{-26}$	[47]
²⁰⁵ Tl ¹³³ Cs		$1.1 \cdot 10^{-24} \\ 1.4 \cdot 10^{-23}$	[48] [49]
HfF ⁺ ThO YbF	$ \begin{array}{l} (-1.3 \pm 2.0_{\rm stat} \pm 0.6_{\rm syst}) \cdot 10^{-30} \\ (4.3 \pm 3.1_{\rm stat} \pm 2.6_{\rm syst}) \cdot 10^{-30} \\ (-2.4 \pm 5.7_{\rm stat} \pm 1.5_{\rm syst}) \cdot 10^{-28} \end{array} $	$\begin{array}{c} 4.8 \cdot 10^{-30} \\ 1.1 \cdot 10^{-29} \\ 1.2 \cdot 10^{-27} \end{array}$	[50] [51] [52]
¹⁹⁹ Hg ¹²⁹ Xe ¹⁷¹ Yb ²²⁵ Ra TlF	$ \begin{array}{c} (2.20 \pm 2.75_{stat} \pm 1.48_{syst}) \cdot 10^{-30} \\ (-1.76 \pm 1.82) \cdot 10^{-28} \\ (-6.8 \pm 5.1_{stat} \pm 1.2_{syst}) \cdot 10^{-27} \\ (4 \pm 6_{stat} \pm 0.2_{syst}) \cdot 10^{-24} \\ (-1.7 \pm 2.9) \cdot 10^{-23} \end{array} $	$7.4 \cdot 10^{-30}$ $4.8 \cdot 10^{-28}$ $1.5 \cdot 10^{-26}$ $1.4 \cdot 10^{-23}$ $6.5 \cdot 10^{-23}$	[53,54] [55,56] [57] [58] [59]

- Paramagnetic Cs, Tl, YbF, ThO, HfF+ systems $\{d_e, C_S\}$ constraints on
- Diamagnetic sustems

Yb, Xe, Hg, Ra, TIF

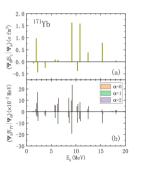

 $\{d_N, \bar{q}_{\pi}^{(0,1,2)}, \bar{C}_{1,2}, C_T\}$ constraints on

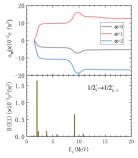
CP-violating nuclear force and nuclear Schiff moments



CP-violating nuclear force at LO

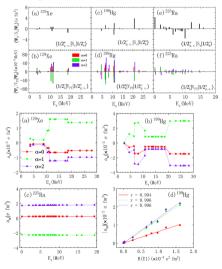
J. de Vries et al., arXiv2001.09050[nucl-th]

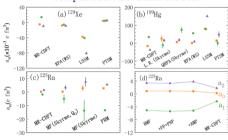



MR-CDFT for structure properties

Nuclear Schiff moment (2rd order perturbation)

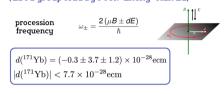
$$\begin{split} S &=& \sum_{k\neq 0} \frac{\langle \Psi_0 | \hat{S}_z | \Psi_k \rangle \langle \Psi_k | \hat{V}_{PT} | \Psi_0 \rangle}{E_0 - E_k} + c.c \\ &\equiv & g_{\pi NN} \sum_{\alpha=0}^2 \bar{g}_{\pi NN}^{(\alpha)} a_\alpha \,. \end{split}$$




Nuclear Schiff moments in other candidates

Decomposition of nuclear Schiff moments

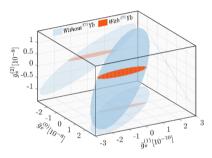
Comparison with other models


Nucleus	a_0	a_1	a_2	_
$^{129}\mathrm{Xe}^b$	-0.0052	+0.0134	-0.0097	- a: exp energy
$^{199}\mathrm{Hg}^{b}$	-0.0163	+0.0327	-0.0375	b: calc energy
225 Ra a	+0.15	-1.9	+1.3	
$^{229}\mathrm{Th}^a$	-3.3	+8.8	-7.7	
$^{229}\mathrm{Th}^{b}$	-21	+58	-52	
229 Pa a	+1.8	+12	+10	
$^{229}Pa^{b}$	+9.2	+60	+51	

- Unified description of different nuclei at the BMF level
- Large contribution from intermediate states in Xe and Hg
- about 2-3 orders-of-magnitude enhancement in Ra,Th, Pa

Multi-dimensional constraints with new measurements

New Measurement of the EDM of Yb atoms (USTC group lead by Prof. Zheng-Tian Lu)

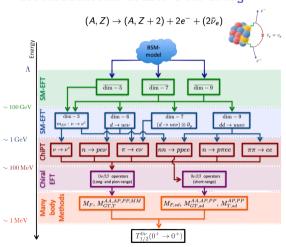


Nuclear structure factors from MR-CDFT calculation

	systems	a_0(efm3)	a_1(efm3)	a_2(efm3)
0	129Xe	-0.0052	0.0134	-0.0097
1	171Yb	-0.0053	0.0126	-0.0168
2	199Hg	-0.0163	0.0327	-0.0375
3	205TIF	0.0110	0.0760	0.0232
4	225Ra	0.1500	-1.9000	1.3000

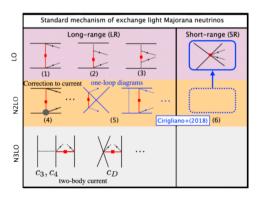
Zhou, JMY, Engel, Meng, arXiv2507.01369 [nucl-th]

Global analysis of the limits on the parameter space



$$\begin{split} \bar{g}_{\pi}^{(0)} &\in [-1.3\times10^{-9}, 1.5\times10^{-9}] \\ \bar{g}_{\pi}^{(1)} &\in [-7.3\times10^{-11}, 1.3\times10^{-10}] \\ \bar{g}_{\pi}^{(2)} &\in [-6.4\times10^{-10}, 5.9\times10^{-10}] \end{split}$$

Lepton-number violation and $0\nu\beta\beta$ decay



Lepton-number violating operators for neutrinoless double-beta decay

The $0\nu\beta\beta$ decay operators in the chiral EFT

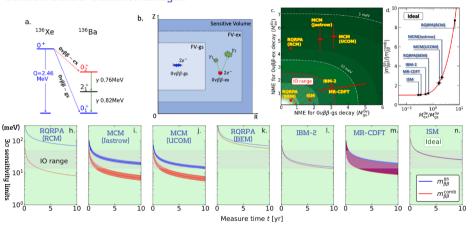
Power
$$\nu = 2A + 2L - 2 + \sum_{i} (\frac{n_f}{2} + d - 2 + n_e)_i$$


Theoretical studies of $0\nu\beta\beta$ decay and neutrino physics

• The $0\nu\beta\beta$ decay rate in the standard mechanism:

$$\langle m_{etaeta}
angle \equiv |\sum_{j=1}^{3}U_{ej}^{2}m_{j}| = \left[rac{m_{e}^{2}}{g_{A}^{4}G_{0
u}T_{1/2}^{0
u}\left|M^{0
u}
ight|^{2}}
ight]^{1/2}$$

• Whether or not the ton-scale experiments are able to cover the entire parameter space for the IO case depends strongly on the accuracy of the NME.



A strategy to enhance the sensitity of $0\nu\beta\beta$ decay

Combined multi-transition analysis

10-year data acquisition on XLZD and the PandaX-xT

The effectiveness strongly depends on the NMEs, which currently exhibit significant discrepancies across different nuclear models.

Ding, Han, Wang, JMY, arXiv2508.17413 [nucl-th]

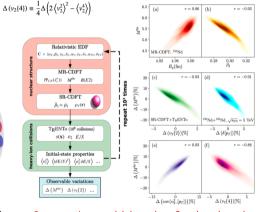
A proposal to reduce the uncertainty of the NMEs

angular distribution of heavy-ion collision

$$\frac{dN_{\rm ch}}{d^2\mathbf{p}} \propto \frac{dN_{\rm ch}}{p_T dp_T} \left(1 + \sum_{n>1} 2 v_n \cos n(\phi - \phi_n)\right)$$

where $v_{2}\!$ is strongly correlated with the initial-state ellipticity parameter, ϵ_{2}

150Nd


observables of interest

$$\begin{split} & \Delta\left(v_{2}\{2\}\right) \equiv \frac{1}{2}\Delta\left(\left\langle v_{2}^{2}\right\rangle\right), \\ & \Delta\left(\delta[p_{T}]\right) \equiv \frac{1}{2}\Delta\left(\left\langle \left(\delta[p_{T}]\right)^{2}\right\rangle\right), \end{split}$$

$$\Delta\left(\operatorname{cov}(v_2^2,[p_T])\right) \equiv \frac{1}{3}\Delta\left(\left\langle v_2^2\delta[p_T]\right\rangle\right),\,$$

QGP

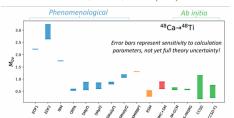
$$\Delta(O) = \frac{O - \langle O \rangle_{\rm C}}{|\langle O \rangle_{\rm C}|}$$

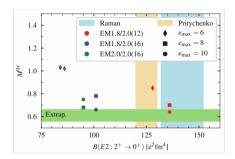
Y. Li, X. Zhang, G. Giacalone, JMY, PRL135, 022301 (2025)

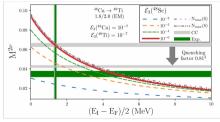
Open questions: model-dependence? nucleus-dependence?

The first-wave of ab initio studies of $0\nu\beta\beta$ decay in ⁴⁸Ca

 Multi-reference in-medium generator coordinate method (IM-GCM)

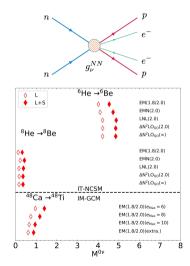

JMY et al., PRL124, 232501 (2020)


 Valence-space shell model+IMSRG (VS-IMSRG)

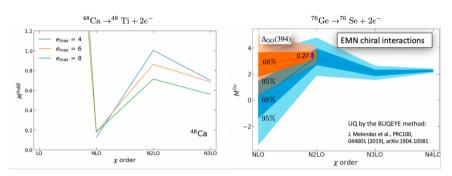

A. Belley et al., PRL126, 042502 (2021)

 Coupled-cluster with singlets, doublets, and partial triplets (CCSDT1).

S. Novario et al., PRL126, 182502 (2021)



Promoting the contact transition operator to LO


- A contact transition operator which could either enhance or quench the $0\nu\beta\beta$ decay, is needed to be promoted to LO to ensure renormalizibility. V. Cirigliano et al., PRL120, 202001 (2018)
- We determine the unknown LEC g_{ν}^{NN} of the contact operator, consistent with the employed chiral interaction (EM1.8/2.0), based on the synthetic data for the process $2n \rightarrow 2p + 2e^-$. V. Cirigliano et al., PRL126, 172002 (2021)
- The contact term turns out to enhance the NME for 48 Ca by 43(7)%, thus reducing the half-life $T_{1/2}^{0\nu}$ significantly.

R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)

The error of EFT truncation on nuclear forces

- The NME converges with respect to the chiral expansion order χ of nuclear forces for candidate nuclei ⁴⁸Ca and ⁷⁶Ge
- ullet The EFT truncation error is shrinking with the increase of χ expansion order ν .

Quantification of the uncertainty in the NME of ⁷⁶Ge

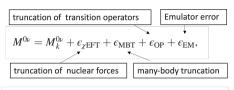
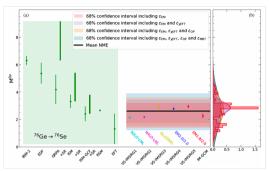
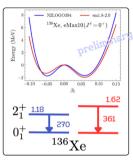
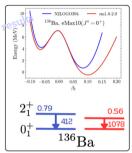



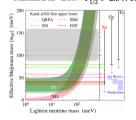
TABLE I. The recommended value for the total NME of $0\nu\beta\beta$ decay in 76 Ge, together with the uncertainties from different sources.

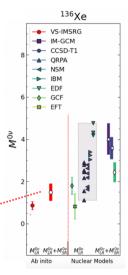
$M^{0 u}$	$\epsilon_{ m LEC}$	$\epsilon_{\chi { m EFT}}$	ϵ_{MBT}	ϵ_{OP}	ϵ_{EM}
$2.60^{+1.28}_{-1.36}$	0.75	0.3	0.88	0.47	< 0.06




- Our recommended value $M^{0\nu} = 2.60^{+1.28}_{-1.36}$.
- Together with the best half-life limit: $> 1.8 \times 10^{26}$ yr, it sets the upper limit $\langle m_{\beta\beta} \rangle = 187^{+205}_{-62}$ meV, and the sensitivity of the next-generation experiment $\langle m_{\beta\beta} \rangle = 22^{+24}_{-7}$ meV, covering almost the entire range of IO hierarchy.

A. Belley, JMY et al., PRL132, 182502 (2024)


Extension to the $0\nu\beta\beta$ decay of 136 Xe



KamLAND-Zen: $T_{1/2}^{0\nu} > 2.3 \times 10^{26}$ yr at 90% C.L.

	IM-GCM	VS-IMSRG
NME	1.15(N2LOGO394) 1.34 (EM1.8-2.0)	[1.08, 1.90]
<m<sub>ββ></m<sub>	0.13-0.15 eV	0.09-0.16 MeV
		large uncertainty

Ding, JMY, et al. in preparation (2025)

A. Belley et al., arXiv2307.15156 [nucl-th]

Summary and outlook

Nuclear physics plays an important role in the search for new physics at low-energy scales.

- Accurate nuclear matrix elements (NMEs) are crucial for designing and interpreting the experiments, including the searches for atomic EDM, $0\nu\beta\beta$ decay, etc.
- We developed a novel nuclear ab initio framework which allows us to determine the values of NMEs and their uncertainties using the operators derived consistently within the chiral EFT.
- We have successfully applied our method to compute the NMEs of $0\nu\beta\beta$ decay in light candidate nuclei. Its application to nuclear Schiff moment is more challenging, but it is on the way.

Outlook: extending nuclear ab initio methods for Schiff moments, and reducing the uncertainty in the NMEs of $0\nu\beta\beta$ decay.

Acknowledgements

Collaborators

- SYSU
 C.R. Ding, Y. Li, Q.Y. Luo, E.F. Zhou
- PKU: J. Meng
- USTC: Z. T. Lu, T. Xia
- MSU: H. Hergert, R. Wirth
- UNC: J. Engel

- TRIUMF: A. Belly, J. Holt
- TU Darmstadt: T. Miyagi
- Notre-Dame U: R. Stroberg
- UAM: B. Bally, T.Rodriguez

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 12375119 and 12141501), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010936).

Thank you for your attention!