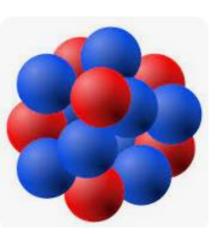
Nuclear Lattice Effective Field Theory without a Lattice

Bing-Nan Lu 吕炳楠

Graduate School of China Academy of Engineering Physics 中物院研究生院

第十届手征有效场论研讨会 Oct 18, 2025

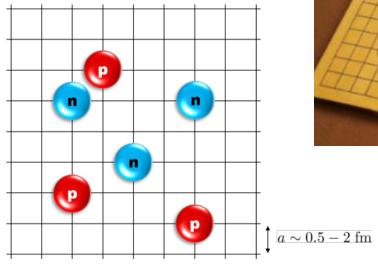


Lattice EFT: A many-body EFT solver

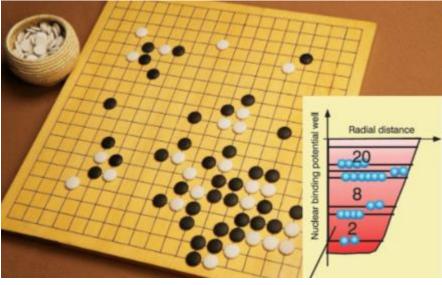
Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing $a \approx 1$ fm = 620 MeV (\sim chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ -like and long-range, pion-exchange interactions
- Exact method, polynomial scaling ($\sim A^2$)



Lattice adapted for nucleus

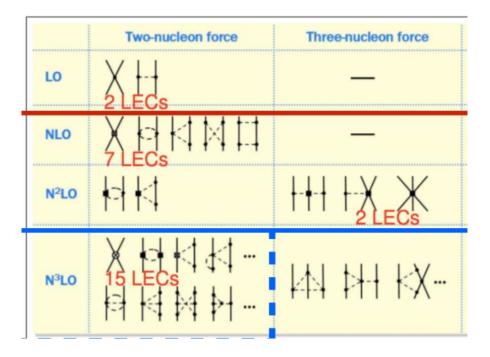


 Solve the non-perturbative nuclear many-body problem by sampling all configurations

Compare Lattice EFT and Lattice QCD

LQCD LEFT degree of freedom quarks & gluons nucleons and pions $\sim 0.1 \text{ fm}$ $\sim 1~{\sf fm}$ lattice spacing dispersion relation relativistic non-relativistic renormalizability renormalizable effective field theory continuum limit yes no Coulomb difficult easy accessibility high $T / low \rho$ low T / ρ_{sat} sign problem severe for $\mu > 0$ moderate

- Lattice EFT share a lot of common features with Lattice QCD. However,
 - Non-rel. → particle number conservation
 - Quadratic dispersion relation
 - → no Fermion doubling problem
 - EFT contains non-renormalizable terms
 - → no continuum limit



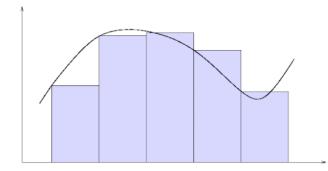
Naïve discretization of chiral Hamiltonian

$$\langle \boldsymbol{p}_{1}', \boldsymbol{p}_{2}' | V_{N-N} | \boldsymbol{p}_{1}, \boldsymbol{p}_{2} \rangle = \left\{ B_{1} + B_{2}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) + C_{1}q^{2} + C_{2}q^{2}(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) + C_{3}q^{2}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) + C_{4}q^{2}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) + C_{5}\frac{i}{2}(\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}) + C_{6}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}) + C_{7}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) - \frac{g_{A}^{2}}{4F_{\pi}^{2}} \left[\frac{(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q})(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q})}{q^{2} + M_{\pi}^{2}} + C_{\pi}\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \right] (\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) + \cdots \right\} \delta(\boldsymbol{p}_{1} + \boldsymbol{p}_{2} - \boldsymbol{p}_{1}' - \boldsymbol{p}_{2}'),$$

$$f''(x) + O(a^{2N}) = c_0^{(N)} f(x) + a^{-2} \sum_{k=1}^{N} \frac{2(N!)^2 (-1)^{k+1}}{k^2 (N+k)! (N-k)!} [f(x+ka) + f(x-ka)]$$

$$\int_a^b f(x) \, dx pprox rac{1}{3} h \sum_{i=1}^{n/2} \left[f(x_{2i-2}) + 4 f(x_{2i-1}) + f(x_{2i})
ight] \, .$$

- Derivative → Finite difference / FFT
- Integration → Summation



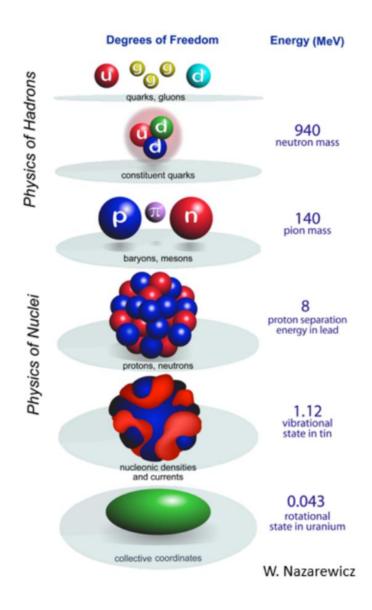
Discretization error $O(a^N) \rightarrow$ Systematically improvable

Dual role of the lattice

- Lattice is used to discretize the action and regulate the delta-functions
- QCD coupling is dimensionless
 - → QCD is **renormalizable**
 - \rightarrow Safe to take the continuum limit $a \rightarrow 0$
- EFT couplings has negative mass dimensions
 - →EFT is **non-renormalizable**
 - → Break down at a small lattice spacing

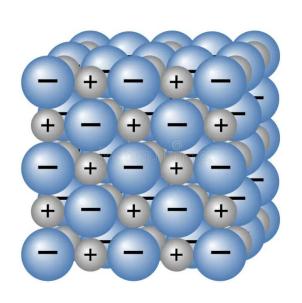
Example: Wigner bound Wigner, PR98, 145 (1955)

For $\Lambda \to \infty$, effective range $r_{\rm eff} \le 0$ However, experimental n-p scattering $r_{\rm eff} \approx 1$ fm

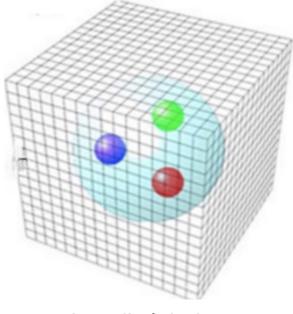


Decoupling of real physics from the lattice

- In lattice field theories, the lattices are introduced artificially
 - Induce lattice artifacts → contaminations to observables
 - Predictions should be independent of the lattice spacing & geometry



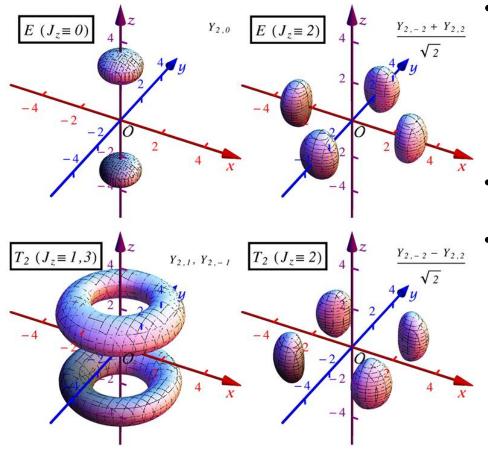
Real crystal



Lattice field theory

Scaffold

Symmetry breaking on the lattice



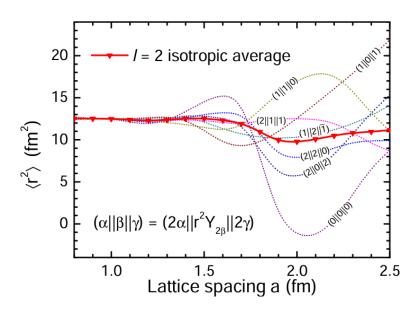
Lu et al., Phys. Rev. D 90, 034507 (2014); Phys. Rev. D 92, 014506 (2015)

- Lattice artifacts break fundamental symmetries
 - SO(3) rotational symmetry
 - Translational invariance
 - Galilean invariance
 - ? Chiral and Gauge
- Induce systematic errors difficult to quantify
 - Symmetries can be restored
 - Average over orientations
 - Supplemental counter terms to Hamiltonian
 - → Symanzik improvement

Symanzik, Nucl. Phys. B 226, 187 (1983); Nucl. Phys. B 226, 205 (1983) Add non-renormalizable terms that vanish in continuum limit: $H \rightarrow H + aO^{(1)} + a^2O^{(2)} + a^3O^{(3)} + \cdots$

Cancels lattice artifacts → Achieving continuum limit at finite lattice spacing

Consequences of lattice artifacts



Matrix elements of tensor operators Lu et al., Phys. Rev. D 92, 014506 (2015)

Tjon line with varying lattice spacing Klein et al., Eur.Phys. J. A 54, 121 (2018)

Tjon line is universal for modern nuclear forces

Tjon, Phys. Lett. B 56, 217 (1975) Nogga et al., Phys. Rev. C 65, 054003 (2002)

- Symmetries and universalities are independent of details of interactions
 - → Sensitive indicators for non-physical artifacts

Smearing as a regulator

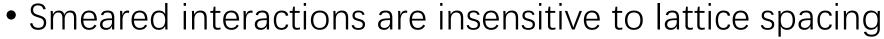
• Smearing suppresses high-momentum modes

$$H_0 = K + \frac{1}{2}C_{SU4}\sum_{n}: \tilde{\rho}^2(n):$$
 Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)

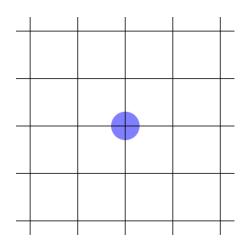
- non-local smearing $\tilde{a}_i(\mathbf{n}) = a_i(\mathbf{n}) + s_{NL} \sum_{i=1}^{n} a_i(\mathbf{n}')$
- local smearing $\tilde{\rho}(\mathbf{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}) \tilde{a}_{i}(\mathbf{n}) + s_{L} \sum_{|\mathbf{n}' \mathbf{n}| = 1} \sum_{i} \tilde{a}_{i}^{\dagger}(\mathbf{n}') \tilde{a}_{i}(\mathbf{n}')$ Gaussian smearing $\tilde{a}(\mathbf{n}) = \sum_{i} \exp\left(-|\mathbf{n} \mathbf{n}'|^{2}/2\Lambda^{2}\right) a(\mathbf{n}')$

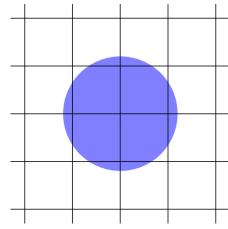
- Essential for building high-quality interactions

Lu et al., Phys. Lett. B 797, 134863 (2019); Niu and Lu, arXiv:2506.12874 (2025)



Klein et al., Phys. Lett. B 747, 511 (2015)

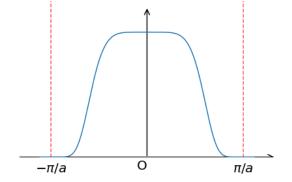




(Pseudo) Continuum limit of lattice EFT

• Smearing introduces an additional soft regulator

$$\tilde{a}(\boldsymbol{n}) = \sum_{\boldsymbol{n}'} f(|\boldsymbol{n} - \boldsymbol{n}'|) a(\boldsymbol{n}') \qquad f(r) = \int \frac{d^3 p}{(2\pi)^3} \exp\left(-\frac{p^{2N}}{2\Lambda^{2N}}\right) \exp(i\boldsymbol{p} \cdot \boldsymbol{r})$$



Smeared contact terms have well-defined continuum limit

$$\lim_{a\to 0}\sum_{\boldsymbol{n}}\tilde{a}(\boldsymbol{n})^{\dagger}\tilde{a}(\boldsymbol{n})^{\dagger}\tilde{a}(\boldsymbol{n})\tilde{a}(\boldsymbol{n}) = \int d^3\boldsymbol{R}\int\prod d^3\boldsymbol{r}f(\boldsymbol{r}_1'-\boldsymbol{R})f(\boldsymbol{r}_2'-\boldsymbol{R})f(\boldsymbol{r}_1-\boldsymbol{R})f(\boldsymbol{r}_2-\boldsymbol{R})a(\boldsymbol{r}_1')^{\dagger}a(\boldsymbol{r}_2')^{\dagger}a(\boldsymbol{r}_2)a(\boldsymbol{r}_1)$$
 In momentum space $\longrightarrow g(p_1')g(p_2')g(p_1)g(p_2), \qquad g(p) = \exp(-p^{2N}/2\Lambda^{2N})$

- Smearing regulators screen and eliminate most lattice artifacts
 - Translational invariance & rotational symmetry restored
 - Galilean invariance remains breaking

Application to real nuclei

Smearing regulator works well combining with many-body algorithms

	E_0	δE_1	E_1	δE_2	E_2	$E_{\rm exp}$
3 H	-7.41(3)	+2.08	-5.33(3)	-2.99	-8.32(3)	-8.48
⁴ He	-23.1(0)	-0.2	-23.3(0)	-5.8	-29.1(1)	-28.3
⁸ Be	-44.9(4)	-1.7	-46.6(4)	-11.1	-57.7(4)	-56.5
12 C	-68.3(4)	-1.8	-70.1(4)	-18.8	-88.9(3)	-92.2
^{16}O	-94.1(2)	-5.6	-99.7(2)	-29.7	-129.4(2)	-127.6
$^{16}\mathrm{O}^{\dagger}$	-127.6(4)	+24.2	-103.4(4)	-24.3	-127.7(2)	-127.6
¹⁶ O [‡]	-161.5(1)	+56.8	-104.7(2)	-22.3	-127.0(2)	-127.6

Second order perturbative Quantum Monte Carlo calculation Lu et al., Phys. Rev. Lett. 128, 242501 (2022)

- $a = 1.0 \text{ fm} \rightarrow \Lambda_a = \frac{\pi}{a} \approx 600 \text{ MeV}$
- Soft cutoff $\Lambda = 350$ MeV

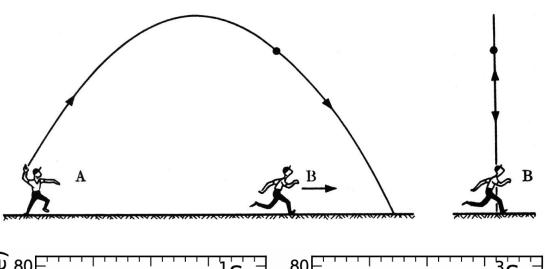
 $\Lambda \ll \Lambda_a \rightarrow$ near **continuum limit**

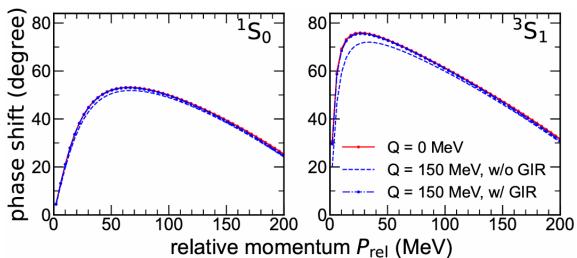
- N^2LO , 2NF + 3NF + OPEP
- 2NF fitted to **n-p phase shift**
- 3NF fitted to ³H mass

Is the nice reproduction a coincidence?

- Galilean invariance broken
- Dependence on $\Lambda \rightarrow RG$ problem
- Lack charge-symmetry-breaking

Galilean invariance restoration

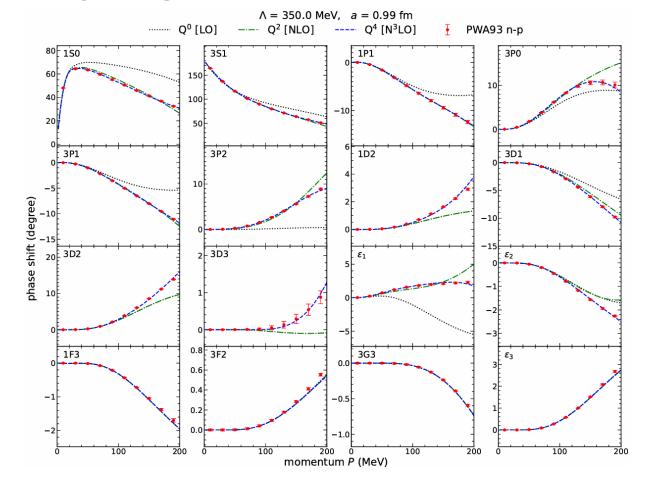




- Galilean invariance
 Observables only depend on relative momenta
- Galilean invariance restoration (GIR) terms $V_{\text{GIR}} = \left[g_1 Q^2 + g_2 Q^2 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)\right] f_{2N}(\{p_i, p_i'\})$ Center of mass momentum $\boldsymbol{Q} = \boldsymbol{p}_1 + \boldsymbol{p}_2 = \boldsymbol{p}_1' + \boldsymbol{p}_2'$
- Systematic determination of GIR terms Li et al., Phys. Rev. C 99,064001 (2019)
- Role of GIR terms in renormalizing 1-d bosons Klein et al., Eur. Phys. J. A 54, 233 (2018)
- Wavefunction matching with GIR terms Elhatisari et al., Nature 630, 59 (2024)

Lattice chiral forces

- Lattice chiral forces with varying lattice spacing
 - N²LO chiral force Alarcon et al., Eur. Phys. J. A 53, 83 (2017)
 - N³LO chiral force Li et al., Phys. Rev. C 98, 044002 (2018)
 - Charge-symmetry-breaking N³LO chiral force Li et al., Phys. Rev. C 112, 014009 (2025)
- Typically 1 fm $\leq a \leq$ 2 fm \rightarrow 300 MeV $\leq \Lambda_a \leq$ 600 MeV
- Excellent agreement with empirical phase shifts



Lattice chiral forces with soft regulators

$$H = K + V_{Q^0} + V_{Q^2} + V_{1\pi} + V_{cou} \\ + V_{CSB}^{pp} + V_{CSB}^{nn} + V_{GIR} + V_{3N} \\ V_{Q^0} = [B_1 + B_2(\sigma_1 \cdot \sigma_2)] f_{2N}(\{p_i, p_i'\}), \\ V_{Q^2} = [C_1q^2 + C_2q^2(\tau_1 \cdot \tau_2) + C_3q^2(\sigma_1 \cdot \sigma_2) \\ + C_4q^2(\sigma_1 \cdot \sigma_2)(\tau_1 \cdot \tau_2) \\ + C_5\frac{i}{2}(q \times k) \cdot (\sigma_1 + \sigma_2) + C_6(\sigma_1 \cdot q)(\sigma_2 \cdot q) \\ + C_7(\sigma_1 \cdot q)(\sigma_2 \cdot q)(\tau_1 \cdot \tau_2)] f_{2N}(\{p_i, p_i'\}), \\ V_{1\pi} = -\frac{g_A^2 f_{\pi}}{4F_{\pi}^2} \left[\frac{(\sigma_1 \cdot q)(\sigma_2 \cdot q)}{q^2 + M_{\pi}^2} + C_{\pi}' \sigma_1 \cdot \sigma_2 \right] (\tau_1 \cdot \tau_2) \\ V_{CSB} = c_{pp} \left(\frac{1 + \tau_{1z}}{2} \right) \left(\frac{1 + \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2} \right) \left(\frac{1 - \tau_{2z}}{2} \right) f_{2N}(\{p_i, p_i'\}) \\ V_{CSB} = c_{nn} \left(\frac{1 - \tau_{1z}}{2}$$

$$V_{\text{GIR}} = \left[g_1 Q^2 + g_2 Q^2 (\sigma_1 \cdot \sigma_2)\right] f_{2N}(\{p_i, p_i'\})$$

$$V_{3N} = \frac{c_E}{2F_{\pi}^4 \Lambda_{\nu}} f_{3N}(\{p_i, p_i'\})$$

$$f_{2N}(\{p_i, p_i'\}) = \exp\left[-\sum_{i=1}^{2} \left(p_i^6 + p_i'^6\right)/(2\Lambda^6)\right]$$

$$f_{3N}(\{p_i, p_i'\}) = \exp\left[-\sum_{i=1}^{3} \left(p_i^6 + p_i'^6\right)/(2\Lambda^6)\right]$$

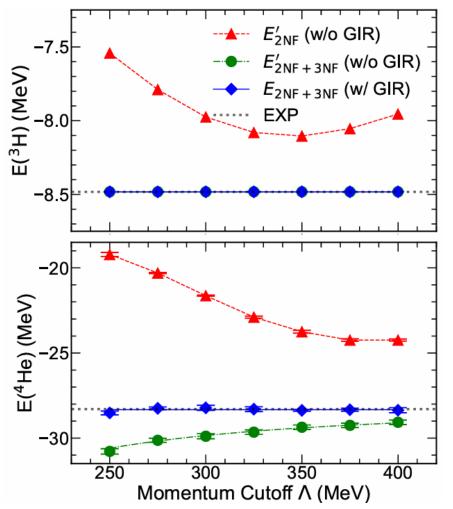
- Include all contact terms up to $O(Q^2)$ consistent with symmetry
- Take cutoff $\Lambda = 250, 275, 300, ... 400 \text{ MeV}$
- For each Λ , determine LECs from
 - Neutron-proton phase shifts
 - Proton-proton & neutron-neutron scattering lengths
 - Galilean invariance of S-wave scattering lengths
 - ³H binding energy

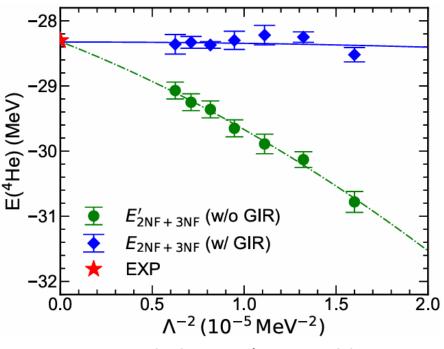
Shi et al., arXiv:2509.02953

LECs with running cutoff

Λ (MeV)	250	275	300	325	350	375	400
$\overline{B_1}$	-4.931	-4.762	-4.592	-4.435	-4.285	-4.140	-3.997
B_2	-0.369	-0.326	-0.285	-0.246	-0.206	-0.164	-0.119
C_1	0.363	0.432	0.454	0.456	0.449	0.440	0.432
C_2	0.063	0.011	-0.017	-0.032	-0.041	-0.048	-0.056
C_3	-0.002	-0.024	-0.033	-0.039	-0.042	-0.047	-0.051
C_4	0.008	-0.029	-0.049	-0.060	-0.067	-0.073	-0.078
C_5	0.997	0.939	0.901	0.875	0.856	0.841	0.829
C_6	0.024	0.015	0.007	0.002	-0.002	-0.004	-0.005
C_7	-0.288	-0.267	-0.255	-0.248	-0.245	-0.245	-0.247
$c_{ m nn}$	0.074	0.068	0.063	0.060	0.058	0.057	0.057
$c_{ m pp}$	0.174	0.155	0.142	0.133	0.127	0.124	0.124
g_1	-1.299	-0.802	-0.501	-0.312	-0.193	-0.119	-0.078
g_2	-0.224	-0.137	-0.082	-0.048	-0.027	-0.014	-0.005
3NF w/ GIR $\smile c_E$	1.863	0.941	0.504	0.313	0.245	0.247	0.289
3NF w/o GIR $\longrightarrow c'_E$	5.389	2.928	1.661	0.995	0.653	0.496	0.459

4 He binding energy against Λ





Extrapolation to $\Lambda = \infty$ with $E(\Lambda) = E(\infty) + \frac{c_2}{\Lambda^2} + \frac{c_4}{\Lambda^4}$

Shi et al., arXiv:2509.02953

- w/o GIR: $E(^4\text{He})$ converge at $\Lambda = \infty$ $E(\infty) = -28.32(33)$ MeV
- w/ GIR: $E(^4\text{He})$ agrees for all Λ $E(\infty) = -28.33(6)$ MeV
- Experiment: $E(^{4}\text{He}) = -28.3 \text{ MeV}$

All LECs fixed with $A \leq 3$

Predict $E(^4\text{He})$ within 0.1 MeV No adjustable parameter

Summary and reflections

- Nuclear lattice EFT can be built without a lattice (Though still solved with a lattice)
- Lattice discretization introduces more complications, e.g., symmetry breaking
 - Restore translational & rotational invariances using a smearing regulator
 - Restore Galilean invariance using counter terms (Similar to Symanzik program)
- Wilson's viewpoint:
 - All contact terms compatible with symmetries should be included to achieve RG invariance
 - → A stringent test for many-body methods
- EFT principles are beliefs however, requiring verifications (done for $A \le 4$)

Thanks for your attention!

