BTRBRFIEEXIMLHIITS  mxt 2025. 10. 20

Perturbative Renormalization of chiral

nuclear forces at subleading order

52 %t (Rui Peng)
Peking University
HEE: VRIS Wi



outline

O B B B

Chiral Effective Field theory
Chiral Nuclear Forces and Renormalization
Pertubative Renormalization at subleading order

Summary and outlook



Chiral Effective Field theory

Energy Resolution

~1 GeV QCD Quarks Gluons

~140 MeV Chiral EFT Pions Nucleons
mT[
~45 MeV Pionless EFT Nucleons

L Halo/Cluster EFT Nucleons Nucleus

~] MeV

o EFT for nuclear vibrations
vibration

deformed nuclei

Fig.:

Degrees of freedom

Degrees of Freedom Energy (MeV)
* %%° 9

Quarks, Gluons

Physics of Hadrons

940
Neutron Mass

Constituent Quarks

S "
140
Pion Mass

Baryons, Mesons

8
Proton Separation Energy in Lea”

Protons, Neutrons

Physics of Nur .ei

1.32
Vibrational State in Tin

Nucleonic Densities
and Currents

0.043
Rotational State in Uranium

Collective Coordinates

Bertsch, Dean, Nazarewicz (2007)



Q/MeV

Effective Field theory(EFT)

breakdown scale: M;; (m, , A)

typical momentum: Q~m,

—— My
- 14 m./MeV
— L=ci(Mj,, Mp;, N)O;({y}) : "
- j H.-W. Hammer, et al. RevModPhys.92.025004 (2020)
—Q
- Power counting
_: Mlo Q Q M A
v T(Q)~ Z ( )VF(V)( —;v'( )
=0 Mhl Mlo A Mhl Mhl
= 0(1)



Power counting

2N Force 3N Force

LO

(Q/A)°
NLO >< I

(Q/A) [1 ______ .

o 1] Y

B
(T —
T,

R. Machleidt , D.R. Entem. Phys.Rept,503:1-75,2011

=
<
T~
S
{
~
S|
=
—
<

4N Force 2N

O0(Q/My;)

oQ¥yMy) | 3¢

0(Q’/ M) o

:

O(Q'/ M)

+...

=9I S
"
Y
& 3 ’
B A P
W
”

3N

¢--®--9

4N

H.-W. Hammer, et al. RevModPhys.92.025004 (2020)



Lippmann-Schwinger equation

, , s T(p", p; k)
T ’ ,k =VA ’ + d T ||2vA /’ I
(p, p; k) (p,p)+J, dp"p (p p)k2+i€_p..2
regularize: V(p',p) = f x(2 )V, p)f (%)
regulator: fRr(x) =e™;n=24,-
or fr(x) =0(1 —x)

Renormalization group invariance T (O)(k; A) = T (k; oo)|:1 -+ O(E)]
(RG-invariance): A
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perturbation TO=vVO +vOGT®
distorted-wave expansion T — (1 + T(O)G)V(l) 1 + GT(O))
VO =0
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plane-wave expansion /
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1. Linearly independent contributions from each term to the amplitude
a. Clear identification of cancellations among terms.

b. Reliable extraction of LECs.
2. Order-by-order preservation of RG-invariance
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Renormalization of one-pion exchange and power counting

A.Nogga,'* R. G. E. Timmermans,>' and U. van Kolck™*
Unstitut fiir Kernphysik, Forschungszentrum Jiilich, D-52425 Jiilich, Germany
2Theory Group, KVI, University of Groningen, The Netherlands
3Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
(Received 2 June 2005; published 16 November 2005)

The renormalization of the chiral nuclear interactions is studied. In leading order, the cutoff dependence is
related to the singular tensor interaction of the one-pion exchange potential. In § waves and in higher partial
waves where the tensor force is repulsive this cutoff dependence can be absorbed by counterterms expected at
that order. In the other partial waves additional contact interactions are necessary. The implications of this finding
for the effective field theory program in nuclear physics are discussed.

DOI: 10.1103/PhysRevC.72.054006
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Renormalizing chiral nuclear forces: A case study of *P,

Bingwei Long"" and C.-J. Yang®>1

! Excited Baryon Analysis Center (EBAC), Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

2Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

3Institute of Nuclear and Particle Physics, Ohio University, Athens, Ohio 45701, USA
(Received 4 August 2011; revised manuscript received 6 October 2011; published 28 November 2011)

We discuss in this Brief Report the subleading contact interactions, or counterterms, in the 3Py channel of
nucleon-nucleon scattering up to O(Q?), where, already at leading order, Weinberg’s original power counting
(WPC) scheme fails to fulfill renormalization group invariance due to the singular attraction of one-pion exchange.
Treating the subleading interactions as perturbations and using renormalization group invariance as the criterion,
we investigate whether WPC, although missing the leading order, could prescribe correct subleading counterterms.
We find that the answer is negative and, instead, that the structure of counterterms agrees with a modified version
of naive dimensional analysis. Using 3P, as an example, we also study the cutoffs where the subleading potential
can be iterated together with the leading one.

DOI: 10.1103/PhysRevC.84.057001

PACS number(s): 21.30.Fe, 12.39.Fe
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We discuss the subleading contact interactions, or counterterms, of the triplet channels of nucleon-nucleon ,%ﬂ %ﬂ -12
scattering in the framework of chiral effective field theory, with § and P waves as the examples. The triplet Ty T
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“Renormalization-group-invariant effective field theory’ for few-nucleon
systems is cutoff dependent

A. M. Gasparyan©" and E. Epelbaum’
Ruhr-Universitit Bochum, Fakultdt fiir Physik und Astronomie, Institut fiir Theoretische Physik II, D-44780 Bochum, Germany

® (Received 10 November 2022; accepted 10 March 2023; published 28 March 2023)

We consider nucleon-nucleon scattering using the formulation of chiral effective field theory which is claimed
to be renormalization group invariant. The cornerstone of this framework is the existence of a well-defined
infinite-cutoff limit for the scattering amplitude at each order of the expansion, which should not depend on
a particular regulator form. Focusing on the ?P, partial wave as a representative example, we show that this
requirement can in general not be fulfilled beyond the leading order, in spite of the perturbative treatment of
subleading contributions to the amplitude. Several previous studies along these lines, including the next-to-
leading order calculation by B. Long and C. J. Yang [Phys. Rev. C 84, 057001 (2011)] and a toy model example
with singular long-range potentials by B. Long and U. van Kolck [Ann. Phys. 323, 1304 (2008)], are critically

reviewed and scrutinized in detail.

DOI: 10.1103/PhysRevC.107.034001
12249.73 MeV

12.5 GeV 12249.69 MeV
60 T T
10 I
o 5
=
£ 0
<
w
& -5
iC
a 4
—10 F -
L
—15 ! 1 ] —920 L 1 1 —80 1 1
0 100 200 300 0 100 200 300 0 100 200 300
Elab [NIGV] Elab [MGV] Elab [MeV]

FIG. 6. The 3P, phase shifts calculated using the approach of Ref. [30] at LO (dashed lines) and NLO (solid lines). The left panel shows
the solution for a typical cutoff (A = 12.5 GeV), whereas the middle and right panels correspond to the cutoff values slightly below (A =

12249.69 MeV) and above (A = 12249.73 MeV) the second exceptional point.
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infinite-cutoff limit for the scattering amplitude at each order of the expansion, which should not depend on
a particular regulator form. Focusing on the ?P, partial wave as a representative example, we show that this
requirement can in general not be fulfilled beyond the leading order, in spite of the perturbative treatment of
subleading contributions to the amplitude. Several previous studies along these lines, including the next-to-
leading order calculation by B. Long and C. J. Yang [Phys. Rev. C 84, 057001 (2011)] and a toy model example
with singular long-range potentials by B. Long and U. van Kolck [Ann. Phys. 323, 1304 (2008)], are critically

reviewed and scrutinized in detail.
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Pertubative Renormalization at subleading order Rui Peng , Bingwei Long , and Fu-Rong Xu, PhysRevC.110.054001(2024)

3P0 channel
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Pertubative Renormalization at subleading order

3P0 channel
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Pertubative Renormalization at subleading order

3P0 channel

NNLO phase shifts at GECs
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FIG. 8. The *P, phase shifts as a function of k for A = 590 MeV
(a) and for A = 2710.54 MeV (b). The dash-dotted (ILO) and the
solid (N*LO) curves use an alternative 8, for the LO input while the
dotted (LO) and dashed (N?LO) curves use the unchanged §&y,. The
solid dots are from the PWA.
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Pertubative Renormalization at subleadjng order Rui Peng , Bingwei Long , and Fu-Rong Xu, arXiv:2508.06838v1(PRC under reivew)

3S1-3D1 channel
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Pertubative Renormalization at subleading order

3S1-3D1 channel

TABLE I: The modified fitting strategy is composed of several schemes. Each scheme is defined

Rui Peng , Bingwei Long , and Fu-Rong Xu, arXiv:2508.06838v1(PRC under reivew)
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AB = 0.5 MeV.
Scheme | BO(MeV) | ki (MeV) | ko(MeV) || A(MeV)
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I | Bewp +AB | 3002 201.0 || [980,998]
I | Buwp — AB | 300.2 201.0 || [998,1018]
v Bemp 350.7 300.2 [1390,1435]
V Bemp 350.7 160.7 [1435,1490]

960 980 1000 1020 1040

A(MeV)

_301

le—4

s

1485 1490 1495

375 1400 1425 1450 1475 1500

A(MeV)

G(A; Ky, ko, B(O)) as a function of A using the modified fitting strategy defined in Table I.

40+ i
—~ 38}
& ~—en
T 36—
5
34+ \ 51PWA
30} , B ,
960 980 1000 1020
A MeV)

1040

01 (deg)

40+ ':

38} !

36 F—-——==o_ N L

34+ '. 51PWA

3t , o |

1375 1400 1425 1450 1475 1500

A (MeV)

FIG. 3: The N2LO 35, phase shifts at & = 250 MeV as a function of A. The solid lines correspond

to the modified fitting strategy defined in Table I, and the dashed lines correspond to the original

fitting strategy. The shaded bands are the background cutoff variations. See the text for more

explanations.

18



Pertubative Renormalization at subleading order

3S1-3D1 channel
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FIG. 7: The 38, — 3Dy phase shifts as functions of k for A = 1434 MeV. The green dotted curves

are the LO. At N?LO, the red dashed represent the original fitting strategy and the black solid

curves use the modified one. The solid dots are from the PWA.

Rui Peng , Bingwei Long , and Fu-Rong Xu, arXiv:2508.06838v1(PRC under reivew)
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FIG. 8: The 35; — 3Dy phase shifts as functions of A at a given k using the modified fitting strategy.

The dashed and solid curves correspond to the LO and N2LO phase shifts, respectively. Different

colors correspond to different values of k£ used: blue for £ = 150 MeV and red for & = 250 MeV.

The bands are the background cutoff variations.
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FIG. 9: The N2LO 297 — 3D, phase shifts as functions of k. The red dashed and the black solid

lines represent the N?LO using the modified fitting strategy for A = 1000 MeV and A = 1434 MeV,

respectively. The green bands are the background variations. The solid dots are from the PWA.
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Summary and outlook

The criterion for any modifications on the fitting strategy is that they introduce only small

cutoff variations to the phase shifts that are comparable with the EFT uncertainty expected

at this order. By trial and error, we found a fitting strategy that satisfies this criterion, as

tabulated in Table [. Not only this modified strategy offers mild cutoff variations, it shows

a much better agreement with the PWA near the GECs than the original fitting strategy

does.
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FIG. 10. The ground-state energy of the triton up to N*LO
as a function of the momentum cutoff, A, computed in the
NCSM. The HO frequency of the LO variational minimum
for Npmax = 46 is used at all orders, see Fig. @ The black
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FIG. 13. The triton ground-state energy at N°LO as a func-
tion of the momentum cutoff. The colored solid lines in each
cutoff region correspond to shifts A = —3°,+1° and 0°, re-
spectively, as defined in Eq. for the *Py channel. The
gray dashed-dotted line shows the A = 0° result across all
cutoffs. The black dashed line shows the experimental triton
ground-state energy [52]. All calculations use Npax = 46 and
the HO frequency, w, is chosen as the LO variational mini-
mum at all orders.

Oliver Thim, et al., arXiv:2510.12207v1
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Summary and outlook

1. Probe the power counting in few-body systems ( °H and “He).

2. Determine the LECs of three-body forces

3. Calculate nuclear many-body properties with perturbative chiral forces.

Thanks for your attention !
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