Study of short-range physics in nuclei with the operator product expansion

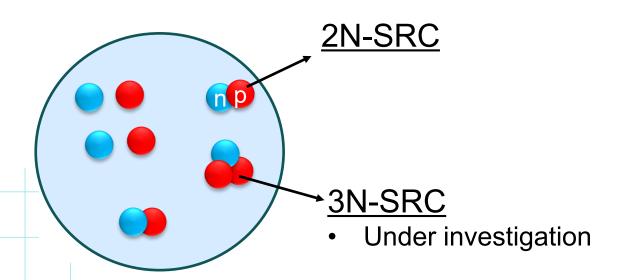
余杰鑫

第十届手征有效场论研讨会南京 2025.10.20

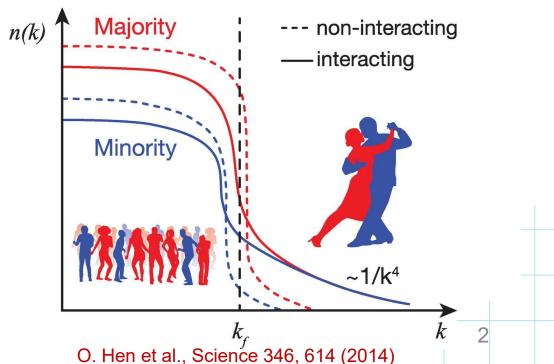
合作者: 龙炳蔚

Short-range Correlation in Nuclei

- Small center-of-mass momentum > Relation to the momentum
- Large relative momentum

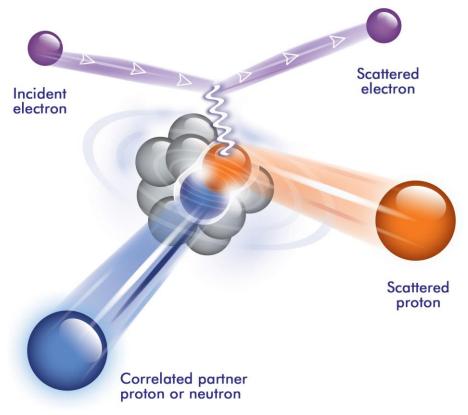


- Relation to the momentum distribution
 - Similar momentum tails for different nuclei



SRC Measurements

Quasi-elastic scattering



Inclusive measurements:

- Detect scattered electron
- Less final state interaction
- Unable to distinguish scattered hadrons

Exclusive measurements:

- Detect scattered proton and electron
- Strong final state interaction
- Enable to distinguish scattered hadrons

O. Hen et al., Science 346, 614 (2014)

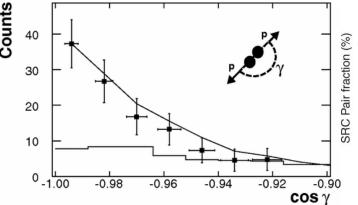
SRC Measurements

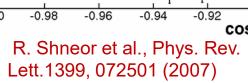
- > Exclusive measurements
 - Back to back nucleon pairs
 - Np dominance
- > Inclusive measurements
 - 2N-SRC (1.3 < x < 2):

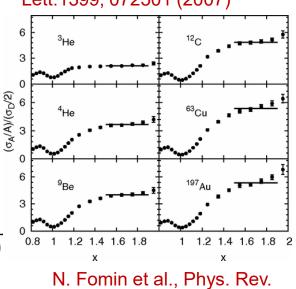
$$a_2(A, D) = \frac{a_2(A)}{a_2(D)} = \frac{2\sigma_A(x, Q^2)}{A\sigma_D(x, Q^2)}$$

• 3N-SRC (2 < x < 3) (not found yet):

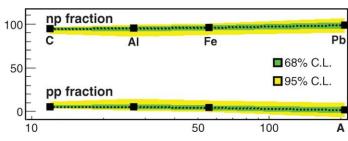
$$a_3(A, {}^3He) = \frac{a_3(A)}{a_3({}^3He)} = \frac{3\sigma_A(x, Q^2)}{A\sigma_{3_{He}}(x, Q^2)}$$



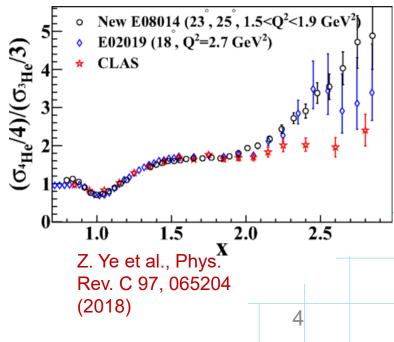




Lett. 108, 092502 (2012)



O. Hen et al., Science 346, 614 (2014)

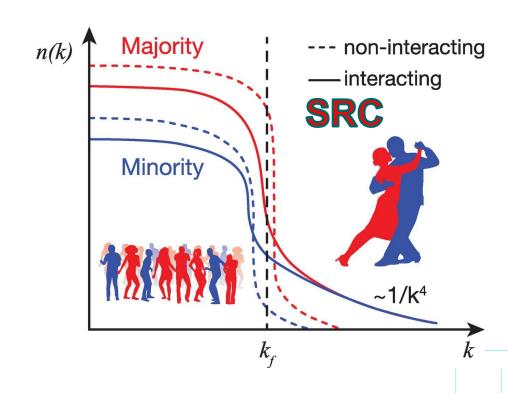


Large-momentum distribution in nuclei

- ➤ It reveals information about the shortrange few-nucleon dynamics
- Connect to 2N-SRC(naive SRC model)

$$a_2(A) = \int_{k_f}^{\infty} dk k^2 n(k)$$

Investigate potential 3N-SRC



OPE & Matching

Single-nucleon Momentum Distribution

Nonlocal operator

$$\Omega(\vec{k}) \equiv \int d^3r e^{-i\vec{k}\cdot\vec{r}} N^{\dagger} \left(-\frac{1}{2}\vec{r}\right) N \left(+\frac{1}{2}\vec{r}\right)$$

Momentum distribution in nuclei A

$$ho(k) \equiv \langle A | \underline{\Omega(ec{k})} | \underline{A}
angle$$
 Hard scale Soft scale

Hard to handle two parts at the same time!

- Hard to find a "perfect" theory to cover two scales!
- "Perfect" means complexity and is hard to do the many-body calculation.

OPE & Matching

Operator Product Expansion

Separation of two scales

$$N^{\dagger} \left(-\frac{1}{2}\vec{r} \right) N \left(+\frac{1}{2}\vec{r} \right) = \sum W_n(r) \mathcal{O}_n(0) \text{ for } r \to 0$$

Momentum distribution in OPE

$$\rho(k) = \sum_n \frac{\widetilde{W}_n(k) \langle A | \mathcal{O}_n(0) | A \rangle}{\sqrt{}}$$
 Hard scale Soft scale

Calculated in the EFT

 $\widetilde{W}_n(k)$ are independent of the sates

- Universal for different nuclei
- Obtained in scattering states

- > OPE-EFT
 - Many-body parameters calculated in the EFT
 - $\widetilde{W}_n(k)$ obtained from matching the underlying theory and the EFT in scattering states

Local Operator

> How to determine local operators

$$N^{\dagger} \left(-\frac{1}{2}\vec{r} \right) N \left(+\frac{1}{2}\vec{r} \right) = \sum_{n} W_n(r) \mathcal{O}_n(0)$$

• ChPT, Pionless EFT, ...

$$N, \pi, \dots$$

- The same quantum number as the nonlocal operator
 - ✓ Spin 0
 - ✓ Isospin 0
 - **√** ...

Local operators

One-body operators

$$\phi_0 \equiv N^{\dagger} N ,$$

$$\phi_2 \equiv N^{\dagger} \overrightarrow{\nabla}^2 N + \text{h.c.} ,$$

- \longrightarrow Wilson coefficient $\delta^{(3)}(k)$
- Two-body operators (related to the 2N-SRC)

$$\mathcal{O}_0(\alpha) = \left[N^T P_i(\alpha) N \right]^{\dagger} \left[N^T P_i(\alpha) N \right]$$
$$\mathcal{O}_2(\alpha) = \left[N^T P_i(\alpha) N \right]^{\dagger} \left[N^T P_i(\alpha) \overleftrightarrow{\nabla}^2 N \right] + \text{h.c.}$$

 $P_i(\alpha)$: projection matrix

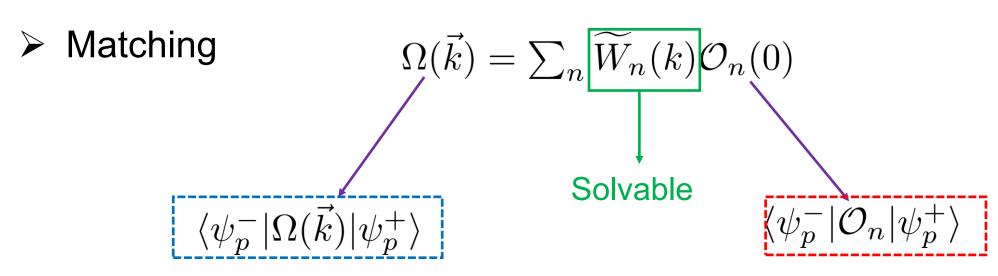
 α :

Spin-isospin space: 3S_1 , 1S_0 , ...

Flavour space: nn, np, pp

OPE & Matching

Matching For Wilson Coefficients In Scattering



Calculated in the underlying theory (AV18)

Calculated in the FFT

 $|\psi_p^{\pm}\rangle$:Two-body scattering in (out) sate

 $\stackrel{\scriptscriptstyle p}{p}$: soft matching momentum (available in the EFT)

The hard scale information can be extracted in the two-body calculation!

Much easier for the underlying theory

Deuteron Calculation

OPE-EFT of Deuteron

Underlying theory: AV18

EFT: Pionless

 \triangleright Matching in 3S_1 states(2 local operators in, NLO Pionless):

$$\begin{split} \frac{\mathcal{A}(k,p)}{\sqrt{\phantom{M_0^{\mathrm{LO}}(k)\mathcal{M}_0^{\mathrm{LO}}(p)}} &= \widetilde{W}_0^{\mathrm{LO}}(k)\mathcal{M}_0^{\mathrm{LO}}(p) \\ &+ \widetilde{W}_0^{\mathrm{NLO}}(k)\mathcal{M}_0^{\mathrm{LO}}(p) + \widetilde{W}_0^{\mathrm{LO}}(k)\mathcal{M}_0^{\mathrm{NLO}}(p) \\ &+ \widetilde{W}_0^{\mathcal{O}_2}(k)\mathcal{M}_0^{\mathrm{LO}}(p) \\ &+ \widetilde{W}_2(k)\mathcal{M}_2^{\mathrm{LO}}(p) + \cdots \end{split}$$

$$\mathcal{A}(k,p) = \langle \psi_p^- | \Omega(\vec{k}) | \psi_p^+ \rangle - \text{AV18}$$

$$\mathcal{M}_n(p) = \langle \psi_p^- | \mathcal{O}_n | \psi_p^+ \rangle - \text{Pionless}$$

$$\mathcal{O}_0(^3S_1) = \left[N^T P_i(^3S_1) N \right]^\dagger \left[N^T P_i(^3S_1) N \right]$$

$$\mathcal{O}_2(^3S_1) = \left[N^T P_i(^3S_1) N \right]^\dagger$$

$$\times \left[N^T P_i(^3S_1) \overleftrightarrow{\nabla}^2 N \right] + \text{h.c.}$$

Two distinct expansion

• $\widetilde{W}_0^{\mathcal{O}_2}$ refer to the "operator mixing" of \mathcal{O}_0 and \mathcal{O}_2 • Large-momentum distribution in the deuteron

$$\rho_{d}(k) = \left[\widetilde{W}_{0}^{\text{LO}}(k) + \widetilde{W}_{0}^{\text{NLO}}(k) + \widetilde{W}_{0}^{\mathcal{O}_{2}}(k)\right] \langle d|\mathcal{O}_{0}|d\rangle_{\text{LO}}
+ \widetilde{W}_{0}^{\text{LO}}(k) \langle d|\mathcal{O}_{0}|d\rangle_{\text{NLO}} + \widetilde{W}_{2}^{\text{LO}}(k) \langle d|\mathcal{O}_{2}|d\rangle_{\text{LO}} + \cdots$$

•
$$1/M_{\rm hi}$$
 (EFT)

• 1/k (OPE)

parameters:

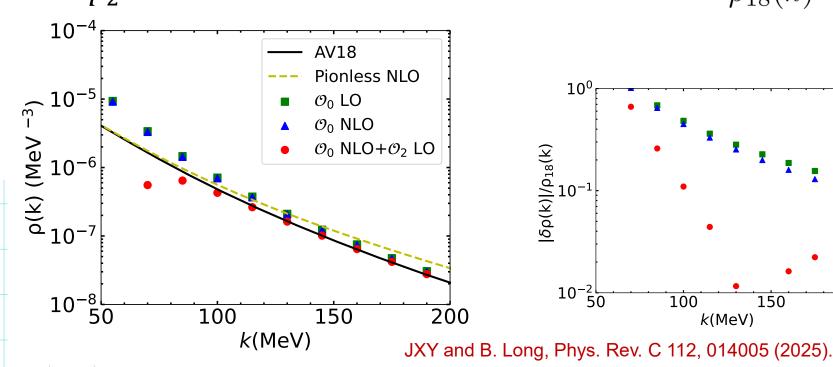
Deuteron Calculation

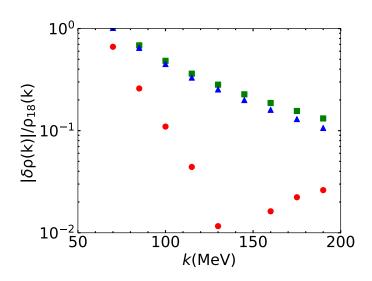
Results

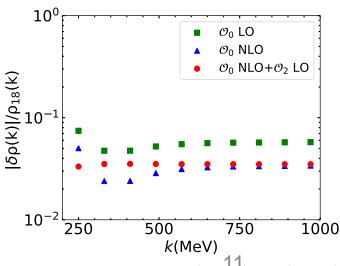
- ➤ Deuteron single-nucleon momentum distribution
 - Matching momentum $p_1 = 4$ MeV and $p_2 = 5 \text{ MeV}$

> Difference of each orders and **AV18**

$$\frac{|\delta\rho(k)|}{\rho_{18}(k)} \equiv \frac{|\rho_{\text{OPE}}(k) - \rho_{18}(k)}{\rho_{18}(k)}$$







Large-momentum Distribution of Nuclei

➤ Local operator (dominance)

$$\mathcal{O}_0(^{3}S_1) = \left[N^T P_i(^{3}S_1) N \right]^{\dagger} \left[N^T P_i(^{3}S_1) N \right]$$

$$\mathcal{O}_0(^{1}S_0) = [N^T P_i(^{1}S_0)N]^{\dagger} [N^T P_i(^{1}S_0)N]$$

- S-wave
- The lowest dimension
- ➤ Large-momentum distribution of nuclei A



Underlying theory: AV18
Low energy theory: LO Chiral force

$$\rho(k) = \widetilde{W}_0(k; {}^{1}S_0)\langle A|\mathcal{O}_0({}^{1}S_0)|A\rangle + \widetilde{W}_0(k; {}^{3}S_1)\langle A|\mathcal{O}_0({}^{3}S_1)|A\rangle + \cdots$$

The ellipsis denotes the contribution of higher-order operators.

Many-body Parameter

$$\langle A|\mathcal{O}_n|A\rangle$$

- Constants determined by the nuclei
 - Calculated in the EFT (not done yet)
 - Fitted

$$\rho(k) = \widetilde{W}_0(k; {}^{1}S_0) \langle A | \mathcal{O}_0({}^{1}S_0) | A \rangle + \widetilde{W}_0(k; {}^{3}S_1) \langle A | \mathcal{O}_0({}^{3}S_1) | A \rangle + \cdots$$

Extracted by Variational Monte Carlo (VMC) data

https://www.phy.apl.gov/thoapy/resear

https://www.phy.anl.gov/theory/resear ch/momenta2/

Two-nucleon Momentum Distribution

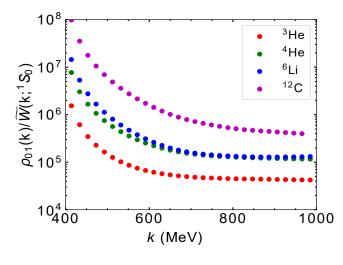
> The OPE of the two-nucleon momentum distribution

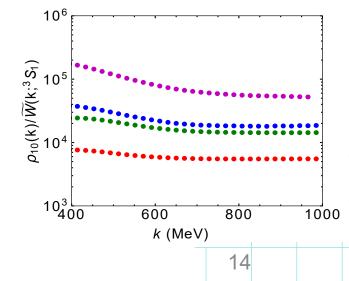
$$\rho_{01}(k) = \widetilde{W}_0^{(2N)}(k; {}^1\!S_0) \langle A|\mathcal{O}_0({}^1\!S_0)|A\rangle + \cdots,$$

$$\rho_{10}(k) = \widetilde{W}_0^{(2N)}(k; {}^3\!S_1) \langle A|\mathcal{O}_0({}^3\!S_1)|A\rangle + \cdots.$$

Extracted scattering

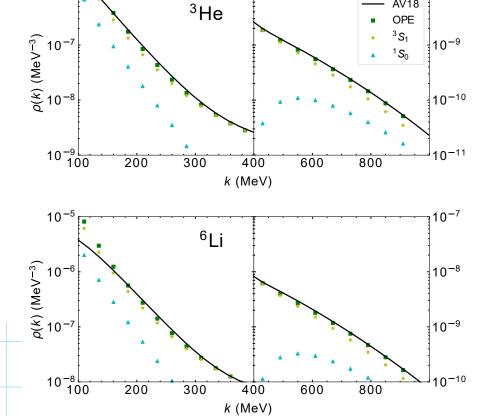
Output for the single-nucleon from two-body OPE after the normalization transformation

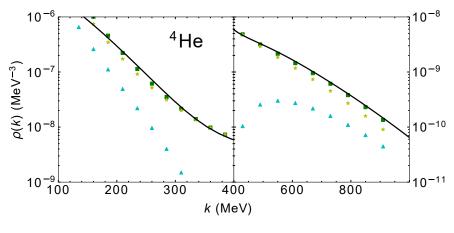


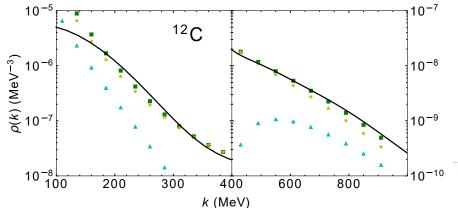


Large-momentum distribution of nuclei

$$\rho(k) = \widetilde{W}_0(k; {}^{1}S_0)\langle A|\mathcal{O}_0({}^{1}S_0)|A\rangle + \widetilde{W}_0(k; {}^{3}S_1)\langle A|\mathcal{O}_0({}^{3}S_1)|A\rangle + \cdots$$







Summary

