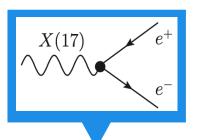
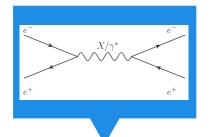
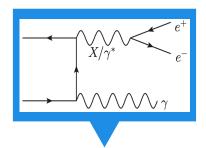


Hunt for X(17)


Jun Jiang, Cong-Feng Qiao (UCAS), Yu-Han Zhao (SDU), arXiv: 2511.xxxx

Jun Jiang (蒋 军) Shandong University 2025-10-20 @ 南京师范大学,南京


CONTENTS



Constraints on Xe⁺e⁻ coupling

X(17) @ PADME

Revisit X(17) @ BESIII

Summary

1 Motivation

Observation of Anomalous Internal Pair Creation in Be8: A Possible Indication of a Light, Neutral Boson

Citations per year

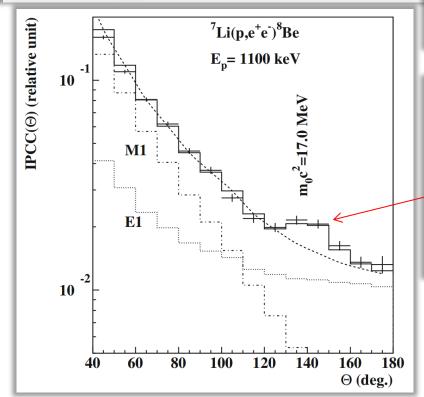
A. J. Krasznahorkay (Debrecen, Inst. Nucl. Res.), M. Csatlós (KLTE-ATOMKI), L. Csige (KLTE-ATOMKI), Z. G

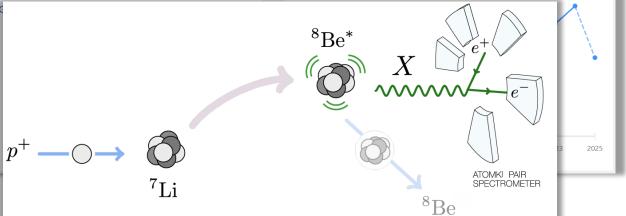
Apr 7, 2015

5 pages

Published in: Phys.Rev.Lett. 116 (2016) 4, 042501

Published: Jan 26, 2016


e-Print: 1504.01527 [nucl-ex]


DOI: 10.1103/PhysRevLett.116.042501

PDG: Heavy Particle Production Cross Section

View in: CERN Document Server, ADS Abstract Service, Nuclear Science References

☐ pdf ② links ☐ cite ☐ claim

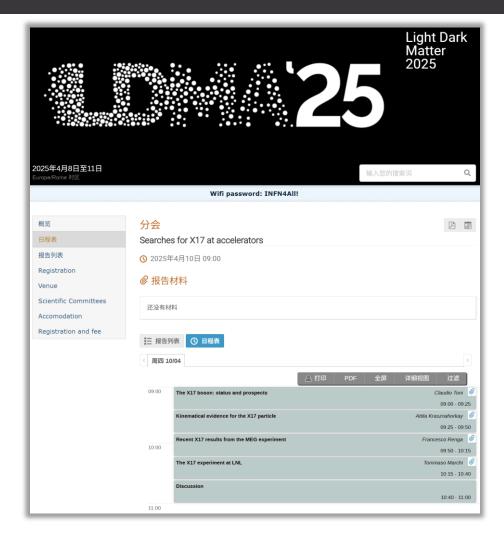
electron–positron invariant mass and opening angle are related by

$$m_{ee}^{2} = 2E_{e^{+}}E_{e^{-}} - 2\sqrt{E_{e^{+}}^{2} - m_{e}^{2}}\sqrt{E_{e^{-}}^{2} - m_{e}^{2}}\cos\theta + 2m_{e}^{2}$$
$$= (1 - y^{2})E^{2}\sin^{2}\frac{\theta}{2} + 2m_{e}^{2}\left(1 + \frac{1 + y^{2}}{1 - y^{2}}\cos\theta\right) + \mathcal{O}(m_{e}^{4})$$

where

$$E \equiv E_{e^{+}} + E_{e^{-}}$$
 and $y \equiv \frac{E_{e^{+}} - E_{e^{-}}}{E_{e^{+}} + E_{e^{-}}}$

Phys. Rev. Lett. 116, 042501 (2016) Eur. Phys. J. C (2023) 83 :230 Phys.Rev.D 95 (2017) 3, 035017


1 Motivation

		Γ	
Nucleus (MeV)	$m_X ({ m MeV})$	Experiment	Ref.
⁸ Be*(18.15)	$16.86 \pm 0.06 \pm 0.50$	Atomki	[2, 6]
⁸ Be*(18.15)	$17.17 \pm 0.07 \pm 0.20$	Atomki	[6]
$^{4}\mathrm{He}^{*}(20.21/21.01)$	$16.94 \pm 0.12 \pm 0.21$	Atomki	[9]
$^{12}C^*(17.23)$	$17.03 \pm 0.11 \pm 0.20$	Atomki	[10]
⁸ Be*(GDR)	$16.95 \pm 0.48 \pm 0.35$	Atomki	[11, 12]
⁸ Be*(18.15)	$16.66 \pm 0.47 \pm 0.35$	VNU-UoS	[13]
⁸ Be*(17.64/18.15)	$< 16.81 [R_{\text{Be}} = 6 \cdot 10^{-6}]$	MEG II	[17]
$e^+e^- \to X_{17}$	$16.90 \pm 0.02 \pm 0.05$	PADME	[20, 21]

More expeiments are on the way:

Mu3e experiment
Montreal Tandem accelerator
New JEDI experiment at GANIL
nTOF collaboration at CERN
PRad experiment at JLab

...

arXiv:2504.11439

Universe 10 (2024) 11, 409

Phys. Rev. C 14, 28 (1976)

https://agenda.infn.it/event/43758/sessions/32329/#20250410

Phys. Rev. Lett. 117(2016), 071803 Phys.Rev.D 95 (2017), 035017 Phys.Rev.D 102 (2020), 036016

A. C. Hayes et al., "Angular correlations in the e⁺e⁻ decay of excited states in Be⁸"

Phys.Rev.C 105 (2022), 055502

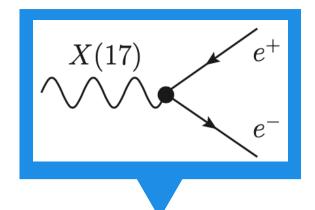
- this resonance is <u>dominated by M1 and E1 decay</u>
- the existence of a 'bump' in the measured angular distribution is <u>strongly dependent on the assumed M1/E1 ratio</u>, which is a strong function of energy, while it was was assumed to be a constant in the Atomki experiments.
- Xilin Zhang et al., "Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?" "Can a protophobic vector boson explain the ATOMKI anomaly?"
 - study the possibility of <u>using the nuclear transition form factor to explain the anomaly</u>

The net result is that X production is dominated by direct transitions induced by E1^X and L1^X (transverse and longitudinal electric dipoles) and C1^X (charge dipole) without going through any nuclear resonance (i.e. Bremsstrahlung radiation) with a smooth energy dependence that occurs for all proton beam energies above threshold. This contradicts the experimental observations and invalidates the protophobic vector boson explanation.

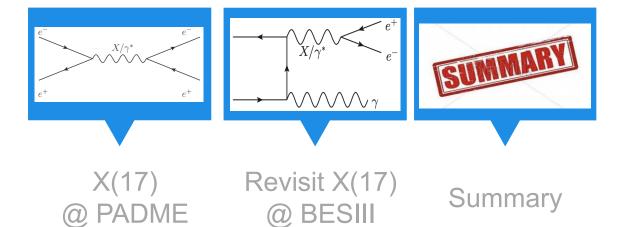
Phys.Lett.B 773 (2017) 159-165 Phys.Lett.B 813 (2021) 136061

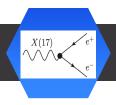
More Info.

Eur. Phys. J. C (2023) 83:230
https://doi.org/10.1140/epjc/s10052-023-11271-x

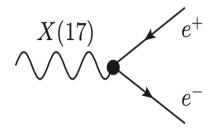

Review

Shedding light on X17: community report


CONTENTS

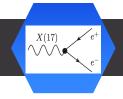


Motivation


Constraints on Xe⁺e⁻ coupling

■ Mixing of V +/- A model:

$$\mathcal{L}_X = -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \frac{1}{2}m_X^2 X_{\mu}X^{\mu} - \sum_f e\bar{f}\gamma_{\mu}(\varepsilon_f^v - \varepsilon_f^a\gamma_5)fX^{\mu}$$


With such model, we suggest identifying X(17) in (1) $e^+e^- \to X(17) + g$, (2) $J/\psi \to X(17) + g$ at BESIII, where X(17) is reconstructed by e^+e^- pairs.

Eur. Phys. J. C 78, 456 (2018) Eur. Phys. J. C 79, 404 (2019)

➤ Scalar X(17) hypothesis is excluded by parity conservation in ⁸Be experiment; while <u>a</u> pseudoscalar state can explain only the ⁸Be and ⁴He anomaly, but not the ¹²C one.

JHEP 02 (2023) 154, JHEP 07 (2023) 168 (erratum)

- ▶ N.V. Krasnikov, "Implications of last NA64 results and the electron g_e -2 anomaly for the X(16.7) boson survival"
 - The combination of latest NA64 experiment and recent value of the electron anomalous magnetic momentum exclude the pure vector and axial-vector couplings of X(17) boson to electrons at the 90% C.L.,
 - but the model with "V \pm A" interaction still survives and can further explains both the electron and muon anomalous magnetic momentum.

Atomki experiments

$$L = \frac{\hbar \times c}{\Gamma(X \to e^+ e^-)} \times \frac{v}{\sqrt{1 - v^2}},$$

$$L = \frac{\hbar \times c}{\Gamma(X \to e^+ e^-)} \times \frac{v}{\sqrt{1 - v^2}}, \quad \Gamma(X \to e^+ e^-) \approx \frac{\alpha m_X}{3} \left((\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \right), \quad \mathcal{O}\left(\frac{m_e^2}{m_X^2}\right) \approx 0.1\%$$

$$\mathcal{O}\left(\frac{m_e^2}{m_X^2}\right) \approx 0.1\%$$

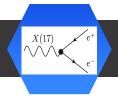
2016, ⁸Be; 2019/2021, ⁴He; 2022, ¹²C

$$m_X = 16.7 \pm 0.35 \text{(stat.)} \pm 0.5 \text{(sys.)} \text{ MeV},$$

 $\frac{\Gamma(^8Be^* \to ^8BeX) \text{ Br}(X \to e^+e^-)}{\Gamma(^8Be^* \to ^8Be\gamma)} = 5.8 \times 10^{-6}.$

Requiring L < 1 cm

$$m_X = 16.94 \pm 0.12 \text{(stat)} \pm 0.21 \text{(sys)} \text{ MeV},$$


$$\frac{\Gamma(^4He^* \to^4 HeX) \text{ Br}(X \to e^+e^-)}{\Gamma(^4He^* \to^4 He\gamma)} = (5.1 \pm 0.13) \times 10^{-6}.$$

$$(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \gtrsim 3.5 \times 10^{-10}.$$

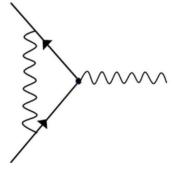
$$m_X = 17.03 \pm 0.11(\text{stat}) \pm 0.20(\text{sys}) \text{ MeV},$$

 $\frac{\Gamma(^{12}C^* \to ^{12}CX) \text{ Br } (X \to e^+e^-)}{\Gamma(^{12}C^* \to ^{12}C\gamma)} = (3.6 \pm 0.3) \times 10^{-6}.$

$$\longrightarrow (\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \gtrsim 7.7 \times 10^{-11}$$

 $\Rightarrow (\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \gtrsim 1.8 \times 10^{-10}.$

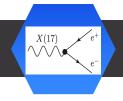
- Electron anomalous magnetic momentum
 - In 2022, an improved determination of the electron anomalous magnetic momentum (AMM) is obtained, $a^{exp} = 0.00115965218059(13)$, which is 2.2 times more accurately than the value in 2008.
 - In comparison with the SM prediction in 2018, $a^{SM} = 0.00115965218161(23)$, we have the negative 3.9 σ discrepancy between the measurement and the SM prediction


$$\Delta a_e \equiv a_e^{\text{exp}} - a_e^{\text{SM}} = (-1.02 \pm 0.26) \times 10^{-12}.$$

Phys.Rev.Lett. 130 (2023), 071801 Science 360 (2018), 191

 \triangleright X(17) boson contributes to $\triangle a_e$ through the leading one-loop triangle diagram

$$a_e^X = \frac{\alpha}{3\pi} \left(\frac{m_e}{m_X}\right)^2 \left[(\varepsilon_e^v)^2 - 5(\varepsilon_e^a)^2 \right].$$


Nucl.Phys.B 137 (1978) 63-76

To diminish the 3.9σ discrepancy between the measurement and SM prediction,

$$(-1.5 \pm 0.4) \times 10^{-6} \lesssim (\varepsilon_e^v)^2 - 5(\varepsilon_e^a)^2 \lesssim 0.$$

The pure vector hypothesis of X(17) boson will enlarge the discrepancy of electron AMM!

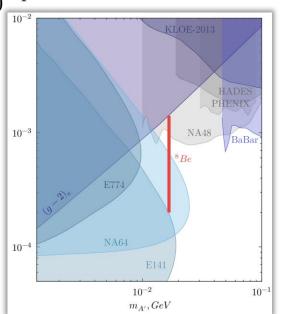
Beam dumb experiments

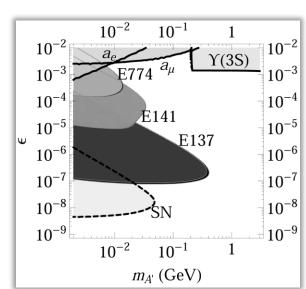
- Bremsstrahlung reaction $e^-Z \to e^-ZX$, X(17) is produced by initial or final state radiation off a single electron.
- Within the errors of $\mathcal{O}\left(\frac{m_e^2}{m_v^2}\right) \approx 0.1\%$, the production rate depends on the coupling parameters only through $(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2$
- Recently, NA64 collaboration searched for X(17) twice and set limits on the Xee coupling parameter at the 90% C. L.

 $1.3 \times 10^{-4} < \sqrt{(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2} < 4.2 \times 10^{-4}$ **Excluded region**:

Excluded region:

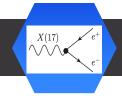
Excluded region: $1.2 \times 10^{-4} < \sqrt{(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2} < 6.8 \times 10^{-4}$ (2017&2018 data combined)


> Around 17 MeV, E137, E144 Beam dumb experimets **Excluded region**:

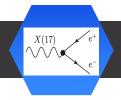

$$8 \times 10^{-8} < \sqrt{(\varepsilon_e^v)^2 + (\varepsilon_e^v)^2} < 3 \times 10^{-4}$$

Survival region:

$$(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \gtrsim 4.6 \times 10^{-7}.$$


We do not discuss the $< 6.4 \times 10^{-15}$ region.

Phys.Rev.D 80 (2009) 075018

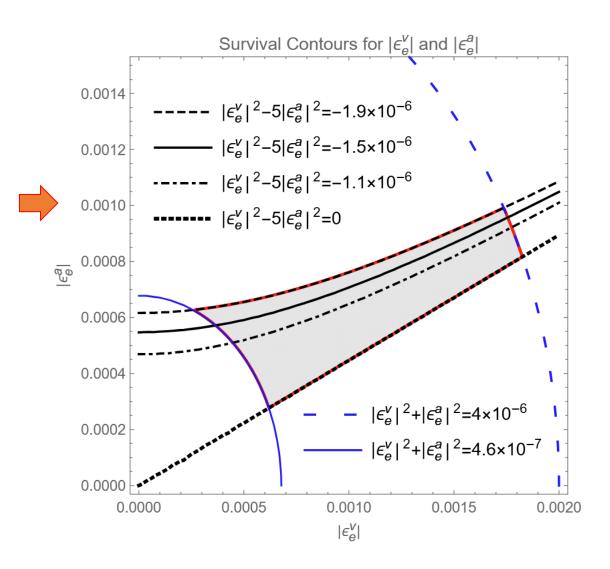

Phys. Rev. Lett. 120 (2018), 231802 Phys. Rev. D 101 (2020) 7, 071101

■ KLOE-2 experiment

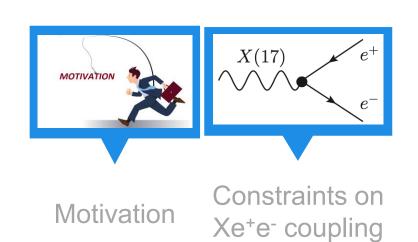
- The KLOE-2 experiment searched for a low-mass vector boson U in $e^+e^- \to U\gamma,\ U \to e^+e^-$.
- Within the errors of $\mathcal{O}\left(\frac{m_e^2}{m_X^2}\right) \approx 0.1\%$, the production rate depends on the coupling parameters only through $(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2$
- > An upper bound on Xee coupling around 17 MeV can be set at the 90% C. L., $(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \lesssim 4 \times 10^{-6}.$

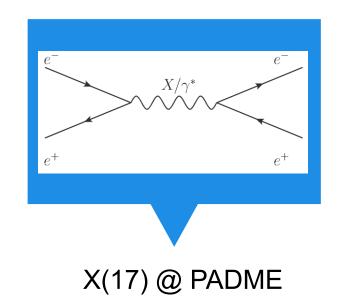
■ Survival regions for Xe⁺e⁻ coupling

Beam dumb experiments

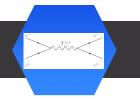

KLOE-2 experiment

$$\begin{array}{l} 4.6 \times 10^{-7} \lesssim (\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \lesssim 4 \times 10^{-6}, \\ (-1.5 \pm 0.4) \times 10^{-6} \lesssim (\varepsilon_e^v)^2 - 5(\varepsilon_e^a)^2 \lesssim 0, \end{array}$$

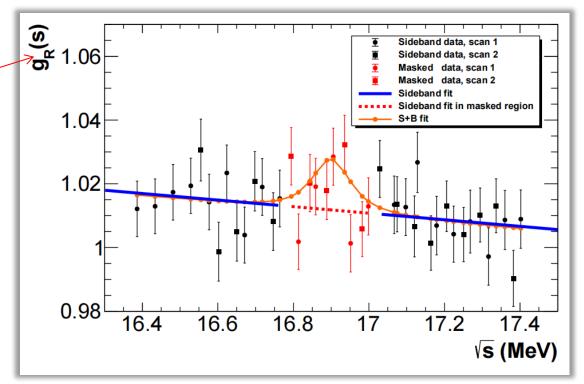

Electron AMM


- Pure V hypothesis: disfavored by Electron AMM.
- Pure A hypothesis: $6.8 \times 10^{-4} \lesssim |\varepsilon_e^a| \lesssim (5.4 \pm 0.7) \times 10^{-4}$.

Pure axial-vector coupling is excluded.



CONTENTS



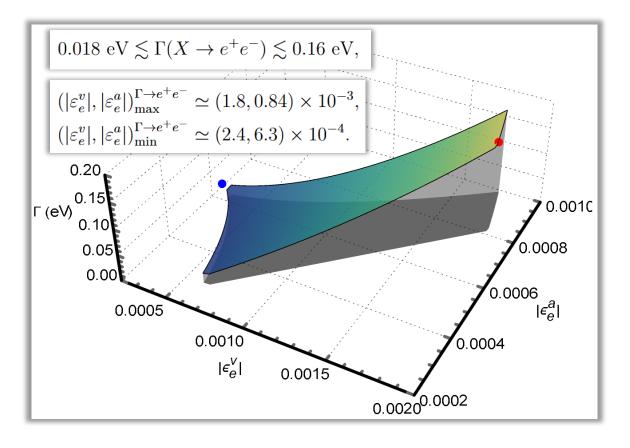
3 X(17) @ PADME

- PADME Experiment at the Frascati DAΦNE LINAC searched for X(17) using a positron beam incident on a fixed target
- The production rates of the Bhabha scattering $e^+e^- \to e^+e^-$ and the $e^+e^- \to \gamma\gamma$ process have been measured within the beam energy between 262 and 296 MeV, corresponding to center-of-mass energies $16.4 < \sqrt{s} < 17.4$ MeV

$$g_R(s) = K(s) \left[1 + \frac{S(s; M_X, g_{ve})\varepsilon_{\text{sig}}(s)}{B(s)} \right]$$

Terms linearly dependent on \sqrt{s} and are collectively referred to as K(s)

- Significant deviation is found at $\sqrt{s} \simeq 16.90$ MeV, with local significance of 2.5 σ and global significance of (1.77 ± 0.15) σ.
- ➤ By assuming the pure vector coupling, the upper limit $|\epsilon^{v}_{e}| \lesssim 5.6 \times 10^{-4}$ is obtained at 90% C.L.

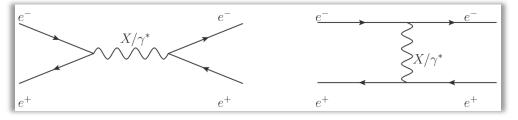


 $\blacksquare e^+e^- \to X(17)$

$$\sigma = \frac{2\pi^2 \alpha}{s} ((\varepsilon_e^a)^2 + (\varepsilon_e^v)^2) \delta(1 - \frac{m_X}{\sqrt{s}}) + \mathcal{O}((\frac{m_e}{\sqrt{s}})^2).$$

Cross section: 89 ~ 777 nb

 \blacksquare $X(17) \rightarrow e^+e^-$



Lifetime of X(17) at rest frame: 4~36 fs.

3 X(17) @ PADME

 \blacksquare e⁺e⁻ \rightarrow X(17)/ γ^* \rightarrow e⁺e⁻

Background (B)

$$\frac{\mathrm{d}\sigma_B}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2}{2s} \left(\frac{3 + \cos^2\theta}{1 - \cos\theta}\right)^2 + \mathcal{O}\left(\left(\frac{m_e}{\sqrt{s}}\right)^2\right).$$

$$\sigma_B = \frac{\pi \alpha^2}{2s} \left(I(\theta_2) - I(\theta_1) \right) + \mathcal{O}\left(\left(\frac{m_e}{\sqrt{s}} \right)^2 \right),$$

$$I(\theta) \equiv \frac{\cos^3 \theta}{3} + \cos^2 \theta + 9\cos \theta + \frac{16}{1 - \cos \theta} + 16\log(\cos \theta - 1) - \frac{31}{3},$$

divergent at $\cos\theta$ =1 (t=0)

Signal (S)

$$\frac{d\sigma_{S}}{d\cos\theta} = \frac{\pi\alpha^{2}s}{2(s - m_{X}^{2})^{2}(s + 2m_{X}^{2} - s\cos\theta)^{2}} \left(\left((\varepsilon_{e}^{v})^{4} + (\varepsilon_{e}^{a})^{4} \right) \right. \\
\times \left(s^{2}(\cos^{2}\theta + 3)^{2} - 6m_{X}^{2}s(\cos^{2}\theta + 3)(\cos\theta + 1) + 2m_{X}^{4}(\cos\theta(5\cos\theta + 6) + 9) \right) \\
+ 2(\varepsilon_{e}^{v}\varepsilon_{e}^{a})^{2} \left(s^{2}(\cos\theta(\cos\theta(\cos\theta(\cos\theta + 8) + 6) + 8) - 7) \right. \\
\left. - 2m_{X}^{2}s(\cos\theta + 1)(\cos\theta(5\cos\theta + 16) - 1) + 2m_{X}^{4}(\cos\theta(11\cos\theta + 26) + 7) \right) \right) \\
+ \mathcal{O}\left(\left(\frac{m_{e}}{\sqrt{s}} \right)^{2} \right). \tag{30}$$

$$\sigma_{S} = \frac{4\pi\alpha^{2}}{3m_{X}^{2}s(s+m_{X}^{2})(s-m_{X}^{2})^{2}}$$

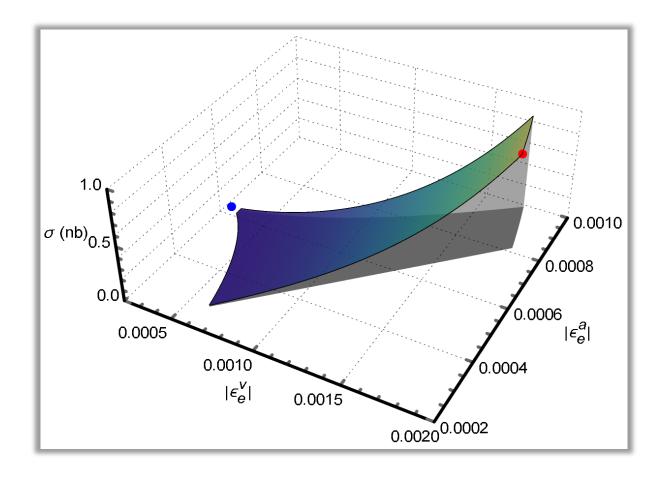
$$\left(s\left(\left((\varepsilon_{e}^{v})^{4}+(\varepsilon_{e}^{a})^{4}\right)\left(3s^{3}+4m_{X}^{2}s^{2}+m_{X}^{4}s-6m_{X}^{6}\right)\right.$$

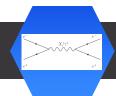
$$\left.+2(\varepsilon_{e}^{v})^{2}(\varepsilon_{e}^{a})^{2}\left(3s^{3}+22m_{X}^{2}s^{2}-5m_{X}^{4}s-18m_{X}^{6}\right)\right)$$

$$\left.+6\left((\varepsilon_{e}^{v})^{4}+(\varepsilon_{e}^{a})^{4}+6(\varepsilon_{e}^{v})^{2}(\varepsilon_{e}^{a})^{2}\right)m_{X}^{2}(m_{X}^{2}-s)(m_{X}^{2}+s)^{2}\log\left(\frac{m_{X}^{2}+s}{m_{X}^{2}}\right)\right)$$

$$\left.+\mathcal{O}\left(\left(\frac{m_{e}}{\sqrt{s}}\right)^{2}\right).$$

 \blacksquare e⁺e⁻ \rightarrow X(17)/ γ^* \rightarrow e⁺e⁻


$$m_X$$
=17 MeV, \sqrt{s} = 17.02 MeV, Γ_X = 0.089 eV

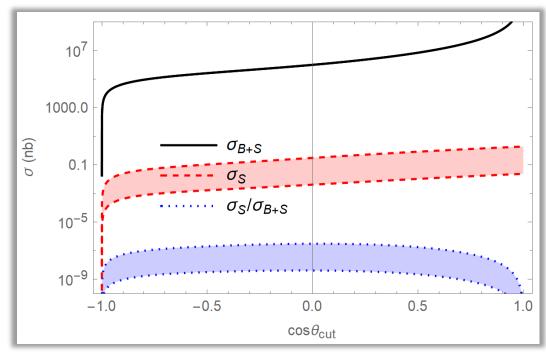

$$0.011 \text{ nb} \lesssim \sigma(e^+e^- \to X \to e^+e^-) \lesssim 0.87 \text{ nb},$$

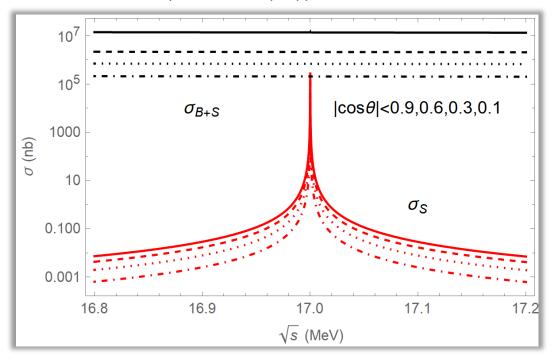
$$(|\varepsilon_e^v|, |\varepsilon_e^a|)_{\max}^{e^+e^- \to X \to e^+e^-} \simeq (1.8, 0.82) \times 10^{-3},$$

 $(|\varepsilon_e^v|, |\varepsilon_e^a|)_{\min}^{e^+e^- \to X \to e^+e^-} \simeq (2.4, 6.3) \times 10^{-4},$

Cross sections depends on $|\sqrt{s} - m_X|$ strongly.

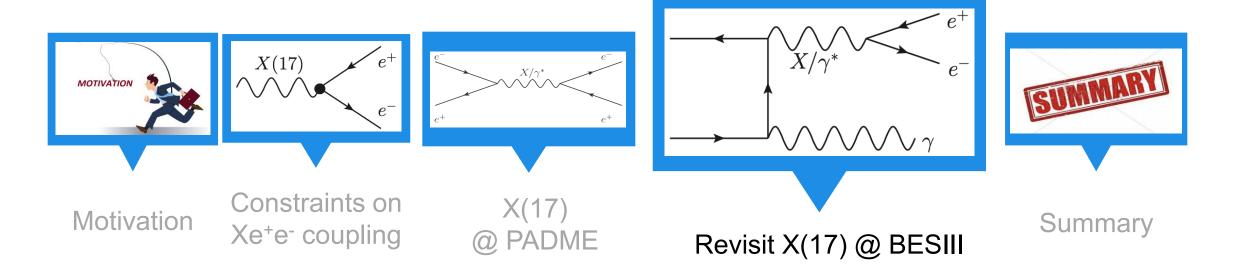
\sqrt{S} (MeV)	$\sigma_{\sf min}$ (nb)	$\sigma_{\sf max}$ (nb)
17.02	0.011	0.87
17.05	0.0017	0.14
17.10	0.00043	0.035
17.20	0.00011	0.0086




$$\blacksquare$$
 e⁺e⁻ \rightarrow X(17)/ γ^* \rightarrow e⁺e⁻

$$m_X$$
=17 MeV, \sqrt{s} = 17.02 MeV, Γ_X = 0.089

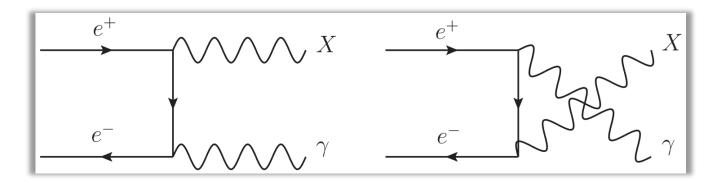
The range of integration is $\cos\theta \in [-1, \cos\theta_{cut}]$


Proper cuts on $|\cos\theta|$ improve the signal-to-noise ratio Cross section $\sigma(e^+e^+ \to X(17))$: 89 ~ 777 nb



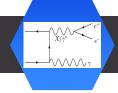
PADME: Scan energy steps 1.5 MeV; beam energy spread 0.75 MeV; ECal hit reconstruction threhold 1 MeV

Due to the extremely low signal-to-noise ratio, I am pessimistic about detecting X(17) in the PADME experiment (Bhabha scattering).


CONTENTS

\blacksquare e⁺e⁻ \rightarrow X(17)+ γ

Within the errors of $\mathcal{O}\left(\frac{m_e^2}{m_X^2}\right) \approx 0.1\%$, the differential cross section depends on the coupling parameters only through the argument $(\varepsilon_e^v)^2 + (\varepsilon_e^a)^2$



$$\frac{d\sigma}{d\cos\theta} = \frac{2\pi\alpha^2}{s} \left((\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \right) \left(\frac{1+\cos^2\theta}{1-\cos^2\theta} \right) + \mathcal{O}\left((\frac{m_e}{m_X})^2, (\frac{m_X}{\sqrt{s}})^2, (\frac{m_e}{\sqrt{s}})^2 \right).$$

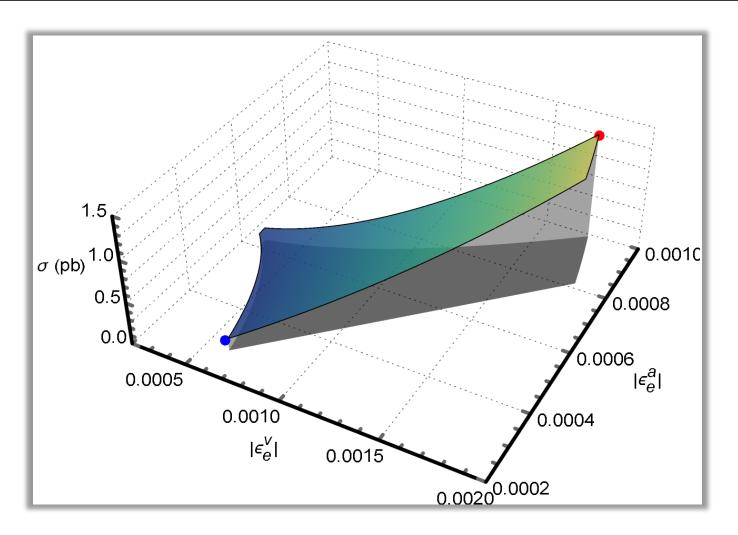
The integrated cross section:

$$\sigma = \frac{4\pi\alpha^2}{s} \left((\varepsilon_e^v)^2 + (\varepsilon_e^a)^2 \right) \left(\text{Log}\left[\frac{s}{m_e^2}\right] - 1 \right) + \mathcal{O}\left((\frac{m_e}{m_X})^2, (\frac{m_X}{\sqrt{s}})^2, (\frac{m_e}{\sqrt{s}})^2 \right).$$

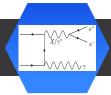
The leading order results are the argument $(\varepsilon_e^v)^2+(\varepsilon_e^a)^2$ times the differential and total cross sections of $e^+e^-\to\gamma\gamma$

 \blacksquare e⁺e⁻ \rightarrow X(17)+ γ

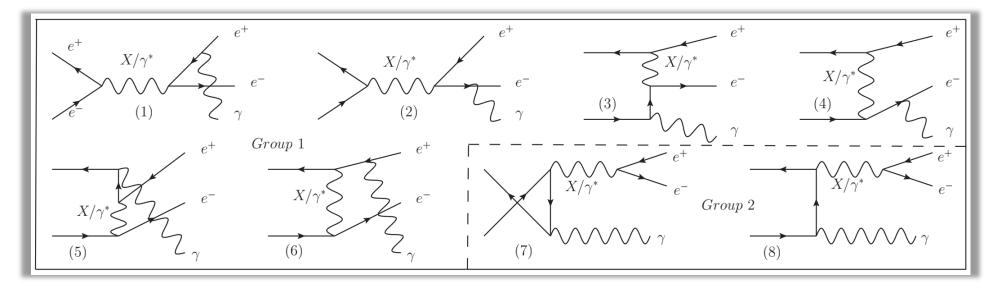
At \sqrt{s} = 3.7 GeV, the integrated cross section:


$$0.144 \text{ pb} \lesssim \sigma(e^+e^- \to X\gamma) \lesssim 1.28 \text{ pb},$$

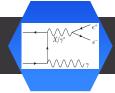
with maximum and minimum coupling points


$$(|\varepsilon_e^v|, |\varepsilon_e^a|)_{\text{max}}^{e^+e^- \to X\gamma} \simeq (1.7, 0.99) \times 10^{-3},$$
$$(|\varepsilon_e^v|, |\varepsilon_e^a|)_{\text{min}}^{e^+e^- \to X\gamma} \simeq (6.1, 2.7) \times 10^{-4}.$$

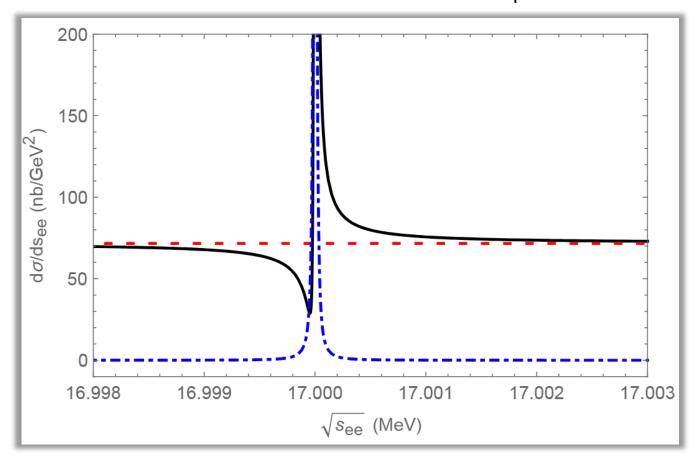
Given the luminosity of BESIII at \sqrt{s} = 3.7 GeV $\mathcal{L} = 10^{33} cm^{-2} s^{-1} \approx 10^4 pb^{-1} year^{-1}$ and BESIII cover 93% solid angle, we roughly estimate X(17) events per year:


$$(1.3 \sim 12) \times 10^3$$

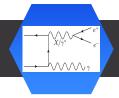
In e⁺e⁻ c.m.s., the lifetime of X(17) at \sqrt{s} = 3.7 GeV is boosted by about two orders to 0.44~3.9 ps. Decay length of X(17): L ≈ 0.13 ~ 1.2 mm, which implies X(17) created at the primary vertex in chamber.


■ Identify X in e⁺e⁻ → e⁺e⁻g

The differential cross section of $e^+(p_a)e^-(p_b) \to e^+(p_1)e^-(p_2)\gamma(p_3)$ can be formulated as


$$d\sigma = \frac{(2\pi)^4}{4\sqrt{(p_a \cdot p_b)^2 - m_e^4}} \sum_{b=1}^{\infty} |\mathcal{M}_{sg}|^2 d\Phi_3,$$
 (39)

where $\bar{\Sigma}$ stands for the average on initial spins and sum over final spins, \mathcal{M}_{sg} and \mathcal{M}_{bg} are the amplitudes of the signal and background Feynman diagrams respectively, and $d\Phi_3$ is the three-particle phase space.


■ Identify X in $e^+e^- \rightarrow e^+e^-g$

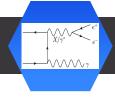
Differential distribution of e⁺e⁻ invariant mass spectrum

$$\left| (|\varepsilon_e^v|, |\varepsilon_e^a|)_{\max}^{e^+e^- \to X\gamma} \simeq (1.7, 0.99) \times 10^{-3}, \right|$$

 $|cos\alpha| < 0.93$ for electrons/positrons, $|cos\alpha| < 0.8$ and $E_{\gamma} > 25$ MeV for photons,

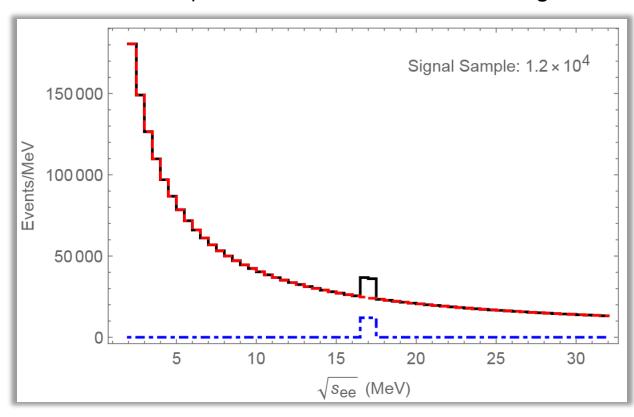
■ Identify X in e⁺e⁻ → e⁺e⁻g

Energy resolution at 20 MeV: $\delta(E)/E = 9\%$ $\delta(17MeV) \approx 1.5 MeV$

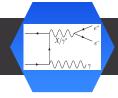

Nucl. Instrum. Meth. A 614 (2010), 345-399

Energy resolution (MeV)	1	1.5	3
Mass ranges (MeV)	[14, 20]	[12.5, 21.5]	(8, 26) <
$B (\times 10^4 \text{ year}^{-1})$	14.8	22.5	48.8
$S (\times 10^4 \text{ year}^{-1})$		1.2 (0.13)	
$S/\sqrt{S+B}$	30 (3.4)	25 (2.7)	17 (1.9)

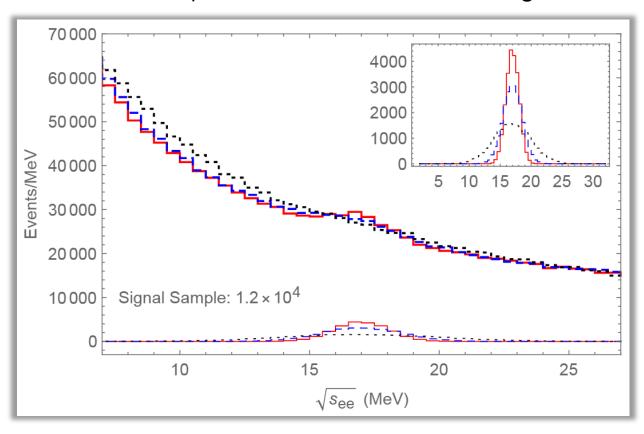
For the Gaussian distribution, 3σ deviation away from the expectation account for 99.73% of the set.


Values outside (inside) the parentheses are for the maximum (minimum) events in $e^+e^- \rightarrow X g$.

The number of events and signal-to-noise ratio data indicate that it is feasible to detect/exclude X(17) in the BESIII experiment.

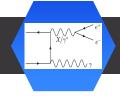

■ Identify X in $e^+e^- \rightarrow e^+e^-g$

Invariant mass spectrum distribution before smearing

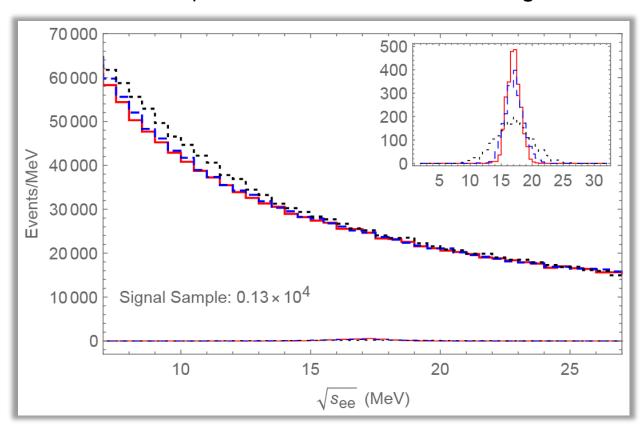

- The bin size: 0.5 MeV
- Maximum Sample: 1.2×10⁴

If the minimum sample (0.13×10^4) was adopted, the height of X(17) bump will be about 10% of that and become a shoulder unless we adopt smaller bin size.

■ Identify X in $e^+e^- \rightarrow e^+e^-g$


Invariant mass spectrum distribution After smearing

- The bin size: 0.5 MeV
- Maximum Sample: 1.2×10⁴
- Energy resolutions: 1, 1.5, 3 MeV for different legends


93% coverange of solid angle is considered, but efficiencies etc. are not taking into account.

Modifying the bin size will not make the bump sharper after smearing.

■ Identify X in $e^+e^- \rightarrow e^+e^-g$

Invariant mass spectrum distribution After smearing

- The bin size: 0.5 MeV
- Maximum Sample: 0.13×10⁴
- Energy resolutions: 1, 1.5, 3 MeV for different legends

Height of the bump decreases by about 90% in comparison with the maximum sample, and we can not identify the X(17) signals over the background events.

- lacktriangle The Atomki anomalies can be explained by introducing the X(17) boson with V \pm A interaction
- ◆ Bosed on exiting experimental data, constraints on the couplings of X(17) to electrons within this V± A model are obtained, while pure V and A couplings are disfavored.
- ✓ Pessimistic for $e^+e^- \rightarrow X(17) \rightarrow e^+e^-$ at PADME, but optimistic for $e^+e^- \rightarrow X(17) + \gamma \rightarrow e^+e^-\gamma$ at BESIII
- ✓ BESIII experiment has the ability to give a decisive conclusion on X(17).

Thank You!

Hunt for X(17)

Jun Jiang (蒋 军) Shandong University jiangjun87@sdu.edu.cn 2025-10-20 @ 南京师范大学,南京