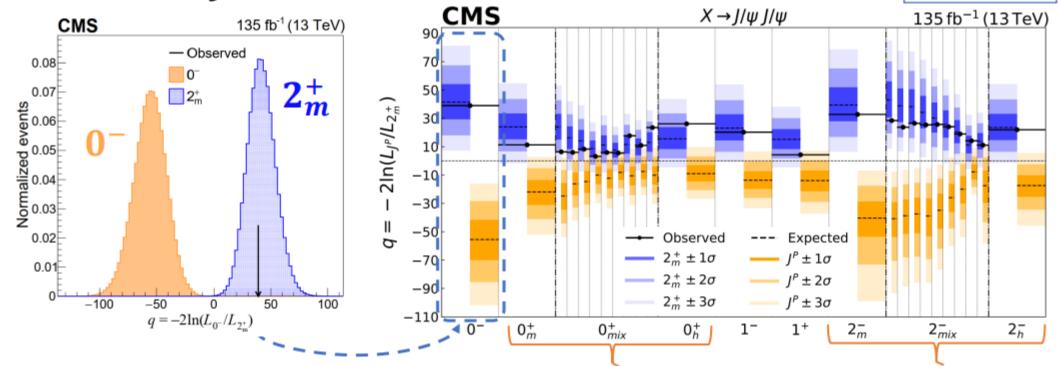

# 密度大、水平高、范围广:

41个报告+11个青年学者成果展示

Nature, Nature 子刊,PRL,…

三天三个会议室(音乐厅、中大楼、100号);


实验+理论+格点



# Summary of results

## 实验: 张敬庆

arxiv:2506.07944



- Data consistent with 2<sup>++</sup>, inconsistent with others
- JPC of the three tetraquark candidates X(6600), X(6900), X(7300)
  - PC = + +
  - $J \neq 1$  at > 99% CL;  $J \neq 0$  at 95% CL
  - J > 2 possible, but highly unlikely, require  $L \ge 2$
  - J = 2 consistent, naively expected J = 0

Scan of two 2<sup>-+</sup> (11 steps)

--No interference (different spin projections)

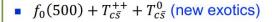
Scan mixture of two  $0^{++}$  amp. (11 steps)

-- Constructive interf. most conservative

## **Outline**

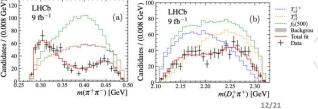
- Introduction
- $B \to D\overline{D}h(h')$  studies
- One charmonium(like) study
- Pentaquark-related studies
- Summary

## 实验: 张黎明


### Two resonance models can fit the data well

[Sci. Bull. 70 (2025) 1432-1444]

- $f_0(500) + f_0(980) + f_2(1270)$ 
  - Large contribution from  $f_0(980)$  and  $f_2(1270)$  above PHSP of  $m(\pi\pi)$
  - This model cannot rejected, but implausible


| Resonance   | Mass (MeV)   | Width (MeV)   | FF (%)        |
|-------------|--------------|---------------|---------------|
| $f_0(500)$  | 376 ± 9 ± 16 | 175 ± 23 ± 16 | 197 ± 35 ± 23 |
| $f_0(980)$  | 945.5        | 167           | 187 ± 38 ± 43 |
| $f_2(1270)$ | 1275.4       | 186.6         | 29 ± 2 ± 1    |







| Resonance      | Mass (MeV)           | Width (MeV)   | FF (%)                   |  |
|----------------|----------------------|---------------|--------------------------|--|
| $f_0(500)$     | $474 \pm 30 \pm 18$  | 224 ± 23 ± 16 | $248^{+40}_{-54} \pm 39$ |  |
| $T_{c\bar{s}}$ | $2327 \pm 13 \pm 13$ | 96 ± 16 ± 23  | $156^{+27}_{-38}\pm25$   |  |



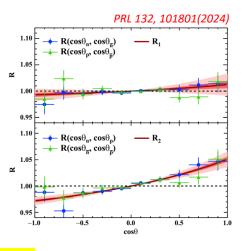
### Disparity in $\Lambda$ decay that reveals $\Delta I = 1/2$ rule

Test of CP violation

$$R\left(\cos\theta_{p},\cos\theta_{\bar{p}}\right) = \frac{1+\alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}{1+\alpha_{\Lambda+}\bar{\alpha}_{\Xi}\cos\theta_{\bar{p}}}$$

Test of  $\Delta I=1/2$  rule

$$R\left(\cos\theta_{n},\cos\theta_{p}\right)=\frac{1+\alpha_{\Lambda0}\alpha_{\Xi}\cos\theta_{n}}{1+\alpha_{\Lambda-}\alpha_{\Xi}\cos\theta_{p}}$$


The average of the ratio

$$\left<\alpha_{\Lambda0}\right>/\left<\alpha_{\Lambda-}\right>=0.870\pm0.012^{+0.011}_{-0.010}$$

Consistent with kaon decay

$$S_1/S_3 = 28.4 \pm 1.3^{+1.1}_{-1.0} \pm 3.9$$

$$P_1/P_3 = -13.0 \pm 1.4^{+1}_{-1}.^1_2 \pm 0.7$$



# **实验: 周小蓉** 李春花—X(3872)

潘翔—粲介子半轻衰变

Observed for the first time, different from S-wave

## More BESIII results of HWRD are coming.....

- ightharpoonup Study of  $\Xi^0 \to \gamma \Sigma^0$
- $\triangleright$  Study of  $\Xi^- \rightarrow \gamma \Sigma^-$
- ightharpoonup Study of  $\Omega^- \to \gamma \Xi^-$
- ► Study of Σ<sup>0</sup> → γn
- > Study of  $\Sigma^+ \rightarrow pe^+e^-$
- ightharpoonup Study of  $\Sigma^0 \to \Lambda e^+ e^-$

**>** ...

| Decay modes                 | Data [19–21, 32, 33] | NRCQM [12] | LFQM [13] | EOMS $\chi$ PT [14] |
|-----------------------------|----------------------|------------|-----------|---------------------|
| $\Lambda \to n\gamma$       | -0.16(10)(5)         | -0.67(6)   | -0.25     | [-0.43, 0.15]       |
| $\Sigma^+ \to p \gamma$     | -0.652(56)(20)       | -0.58(6)   | -0.1      | [-0.32, -0.27]      |
| $\Sigma^0 \to n\gamma$      |                      | 0.37(4)    | -0.22     | [-0.70, 0.70]       |
| $\Xi^0 \to \Lambda \gamma$  | -0.741(62)(19)       | 0.72(11)   | 0.23      | [-0.83, -0.59]      |
| $\Xi^0 \to \Sigma^0 \gamma$ | -0.69(6)             | 0.33(4)    | -0.15     | [-0.74, -0.63]      |
| $\Xi^- \to \Sigma^- \gamma$ | 1.0(13)              |            |           | [-0.18, 0.38]       |

Chin.Phys.Lett. 42, 032401 (2025)

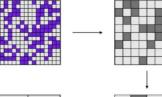
### Summary

- Introduce an new method to organize operator in lattice
- Long range force problem
- The pole of T<sub>cc</sub> from lattice QCD calculation

Table VI. Fitting results of coupling constant  $c_S$  and the pole position.

| isopsin | potential   | $c_S^I [10^{-5} {\rm MeV}^2]$ | $\chi^2/\mathrm{dof}$ | $E^{ m Pole} - E_{th} [{ m MeV}]$ |
|---------|-------------|-------------------------------|-----------------------|-----------------------------------|
| 0       | without OPE | -1.05(0.12)                   | 2.75/5                | -12.2(4.1)                        |
| 0       | with OPE    | -1.55(0.15)                   | 2.35/5                | $-10.2(2.4)\pm5.1(3.2)i$          |
| 1       | without OPE | 3.37(0.61)                    | 6.15/5                | $41.9(2.7)\!\pm2.3(0.2)i$         |
| 1       | with OPE    | 4.42(0.90)                    | 5.55/5                | $42.5(4.1)\!\pm2.7(0.3)i$         |

### **05 Conclusion and outlook**


- > Build up modified Lüscher formula
  - · Extract correct physical information near left-hand cut
  - · Fast convergency in partial-wave expansion
  - · Modified effective range expansion has much larger convergence radius
- ➤ Give fast convergent method to calculate modified zeta function
- > Apply to OPE potential
- $\rightarrow$  Outlook: apply modified Lüscher formula to NN and  $T_{cc}^+(3875)$

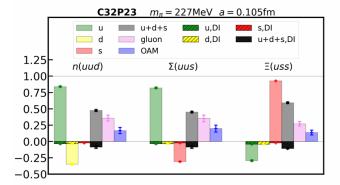
# 格点: 吴佳俊、吕炳楠 庞锦毅、曹雄辉、 牛忠旺

### Summary and reflections

- Nuclear lattice EFT can be built without a lattice (Though still solved with a lattice)
- Lattice discretization introduces more complications, e.g., symmetry breaking
  - Restore translational & rotational invariances using a smearing regulator
  - Restore Galilean invariance using counter terms (Similar to Symanzik program)
- Wilson's viewpoint:
  - All contact terms compatible with symmetries should be included to achieve RG invariance
     → A stringent test for many-body methods
- EFT principles are beliefs however, requiring verifications (done for  $A \le 4$ )

## Thanks for your attention!








### Summary

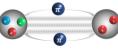
• CLQCD ensembles can now provide high precision hadron matrix elements through the blending method;

|        | Ensemble     | L  | Т   | a(fm) | $m_{\pi}$ | $n_{\rm cfg}$ | $\mathcal{S}_A^{u-d}$ | Propagators | Propagators for<br>1% error |
|--------|--------------|----|-----|-------|-----------|---------------|-----------------------|-------------|-----------------------------|
| CLQCD  | F64P13       | 64 | 128 | 0.078 | 134       | 40            | 1.24(01)              | 0.34M       | 0.11M                       |
| CalLAT | a12m130      | 48 | 64  | 0.121 | 131       | 1000          | 1.29(03)              | 0.03M       | 0.15M                       |
| ETMC   | cB211.072.64 | 64 | 128 | 0.080 | 139       | 750           | 1.29(02)              | 1.71M       | 5.5M                        |
| RQCD   | D452         | 64 | 128 | 0.076 | 156       | 1000          | 1.19(25)              | 0.01M       | 5.2M                        |
| PNDME  | a09m130      | 64 | 96  | 0.090 | 138       | 1290          | 1.32(03)              | 1.69M       | 11.2M                       |



- Update results on CLQCD ensembles suggest both quark and gluon contribute roughly half of the octet baryon spin;
- Control on the systematic uncertainties are in progress.

#### Summary & Outlook

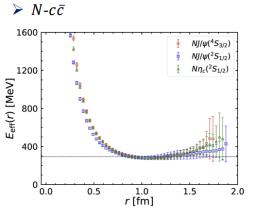

- > Summary: we present a first realistic study of low-energy N-V meson  $(N-I/\psi)$  and  $N-\phi$ ) interaction based on lattice QCD calculations near the physical point
  - The potential is found to be attractive at all distances
  - Long-range potential→consistent w/ TPE
  - Detailed analysis for near-threshold scattering properties

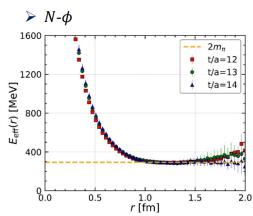
#### ➤ Outlook:

- The physical point simulations
- The long-range potential for other hadron pairs



#### Two-pion-exchange tail





J. Castella and G. Krein, Phys. Rev. D 98, 014029 (2018) H. Fujii and D. Kharzeev, Phys. Rev. D 60, 114039 (1999) G. Bhanot and M. E. Peskin, Nucl. Phys. B 156, 391(1979)

$$V(r) = -\alpha \frac{e^{-2m_{\pi}r}}{r^2}$$



$$E_{\text{eff}}(r) = -\frac{\ln\left[-V(r)r^2/\alpha\right]}{r}$$





- long-range (r > 1 fm) potential is indeed dominated by the TPE
- nonperturbative gluon exchange manifests as TPE



- Introduction
- Charge-parity violation and atomic EDMs
- 3 Lepton-number violation and  $0\nu\beta\beta$  decay
- 4 Summary and outlook





## Matching from quark to hadronic operators: external source vs spurion methods

#### Gang Li

School of Physics and Astronomy, SYSU

GL, Chuan-Qiang Song, Jiang-Hao Yu, 2507.02538 (hep-ph)

第十届手征有效场论研讨会

October 19, 2025, Nanjing

# 新物理 尧江明、李刚、马小东、蒋军

### General $\Delta B = 1$ nucleon decay operator structures

- Must involve an odd number of light quarks: qqq, qqqG,  $qqqq\bar{q}$ , ...
- Leading-order interactions: involve only three light quarks
- Only four general triple-quark (without derivative) structures

$$\begin{split} \mathcal{O}_{a}^{yzw} &= (\overline{\Psi_{a}} q_{\mathrm{L},y}^{\alpha}) (\overline{q_{\mathrm{L},z}^{\beta \mathrm{C}}} q_{\mathrm{L},w}^{\gamma}) \epsilon_{\alpha\beta\gamma} \\ \mathcal{O}_{b}^{yzw} &= (\overline{\Psi_{b}} q_{\mathrm{R},y}^{\alpha}) (\overline{q_{\mathrm{L},z}^{\beta \mathrm{C}}} q_{\mathrm{L},w}^{\gamma}) \epsilon_{\alpha\beta\gamma} \end{split}$$

+ their chiral partners with 
$$L \leftrightarrow R$$

$$\begin{split} \mathcal{O}_{c}^{yzw} &= (\overline{\Psi_{c,\mu}} q_{\mathrm{L},\{y}^{\alpha}) (q_{\mathrm{L},z}^{\beta \mathrm{C}} \gamma^{\mu} q_{\mathrm{R},\mathrm{W}}^{\gamma}) \epsilon_{\alpha\beta\gamma} \\ \mathcal{O}_{d}^{yzw} &= (\overline{\Psi_{d,\mu\nu}} q_{\mathrm{L},\{y}^{\alpha}) (\overline{q_{\mathrm{L},z}^{\beta \mathrm{C}}} \sigma^{\mu\nu} q_{\mathrm{L},\mathrm{W}}^{\gamma}) \epsilon_{\alpha\beta\gamma} \end{split}$$

- $\bullet$   $\overline{\Psi_a}$ ,  $\overline{\Psi_b}$ ,  $\overline{\Psi_{c,\mu}}$ ,  $\overline{\Psi_{d,\mu\nu}}$ : combinations of non-QCD fields
- y, z, w = 1,2,3: quark flavor indices with  $q_{1,2,3} = u, d, s$
- $\{y, z\}$  and  $\{y, z, w\}$ : total symmetrization of flavor indices

#### Newly identified structures

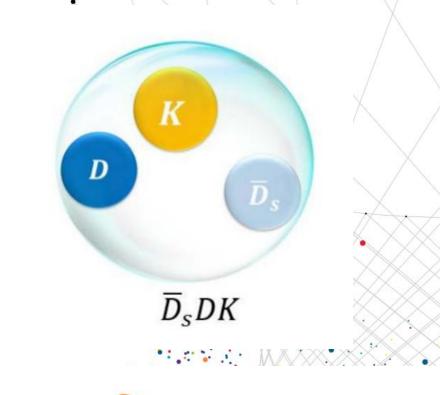
Form a basis for any triple-quark operators

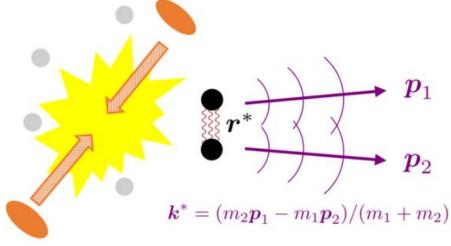
Yi Liao, XDM, Hao-Lin Wang, arXiv: 2504.14855

## 奇特强子态: CONTENTS

杨智 肖褚文 陈山 刘雪杰 钟显辉 陈侃 胡欣月 刘明珠 刘志伟 孟璐 王俊璋 严茂俊

- Review of chiral dynamics
- Decays with chiral dynamics
- Masses with chiral dynamics
- Scattering with chiral dynamics
- Summary

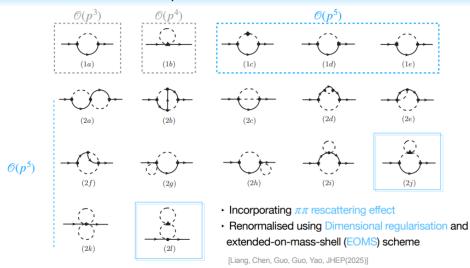

#### $2\pi \mathsf{DAs}$


• Twist-2 and twist-3 contributions to the  $D_s o \pi\pi$   $(D_s o f_0)$  form factors at  $q^2=0$ 

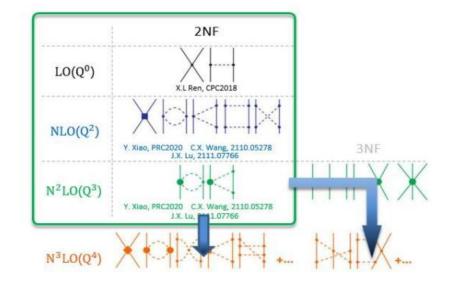
| Form Factors                                          | Twist-2                                        | Twist-3                                         | Total                                           |  |
|-------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| $\sqrt{q^2}F_0^{(l=0)}(0) = \sqrt{q^2}F_t^{(l=0)}(0)$ | $0.20^{+0.02}_{-0.02} - i0.24^{+0.02}_{-0.02}$ | $-0.41^{+0.04}_{-0.05} + i0.51^{+0.02}_{-0.04}$ | $-0.21^{+0.02}_{-0.01} + i0.27^{+0.03}_{-0.02}$ |  |
| $\sqrt{q^2}F_0^{(l=2)}(0) = \sqrt{q^2}F_t^{(l=2)}(0)$ | $0.27^{+0.03}_{-0.02} + i0.21^{+0.02}_{-0.01}$ | $-0.55^{+0.02}_{-0.03} - i0.41^{+0.05}_{-0.04}$ | $-0.28^{+0.02}_{-0.02} - i0.20^{+0.02}_{-0.01}$ |  |
| $f_{+}(0) = f_{0}(0)$                                 | $0.20^{+0.03}_{-0.05}$                         | $0.41^{+0.04}_{-0.06}$                          | $0.61^{+0.05}_{-0.07}$                          |  |

• The widths (in unit of  $10^{-4}$ ) of  $D_s \to [\pi\pi]_S e^+\nu$  obtained from  $D_s \to [\pi\pi]$  and  $D_s \to f_0$  transitions, under the  $q\bar{q}$  component assumption.

| $D_s \to [\pi\pi]_{\rm S} e^+ \nu_e$ | $D_s \to [f_0 \to \pi\pi] e^+ \nu_e$ [23] | Data [25]      |
|--------------------------------------|-------------------------------------------|----------------|
| $0.81^{+0.34}_{-0.14}$               | $18.8^{+4.5}_{-3.8}$                      | $17.2 \pm 1.6$ |



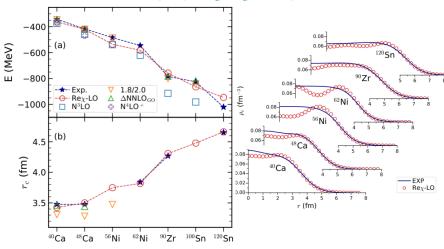




#### The nucleon mass at two-loop order

# Chiral EFT 姚德良

姚梁任申彭陆 化中 的 性




### □ R-ChNF-N³LO ongoing!



#### Medium-mass nuclei

> Energy, charge radius, and charge density calculated by RBHF using relativistic LO chiral interaction, in comparison with nonrelativistic ab initio studies.

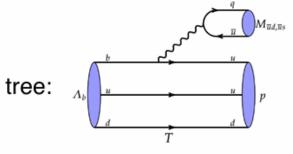




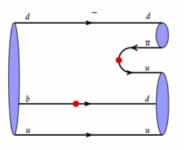
### > N³LO 两体核力基本构建完成

- · J≥3 高分波相移与Nijmegen相移符合很好
- NNLO/N3LO几乎重合
- 非微扰地描述低分波相移

### > 相对论三体框架基本搭建完成


- 实现LO相对论两体核力描述三体可观测量
- NLO/NNLO/N3LO高阶核力
- 三体力相关问题

## **Others**


熊佳颖 李衡智 马垚 景豪杰 **Craig Roberts** 于福升

## **CPV** cancelled between S- and P-waves

$$\mathcal{M} = \bar{u}_p \left( S + P \gamma_5 \right) u_{\Lambda_b}$$



penguin:

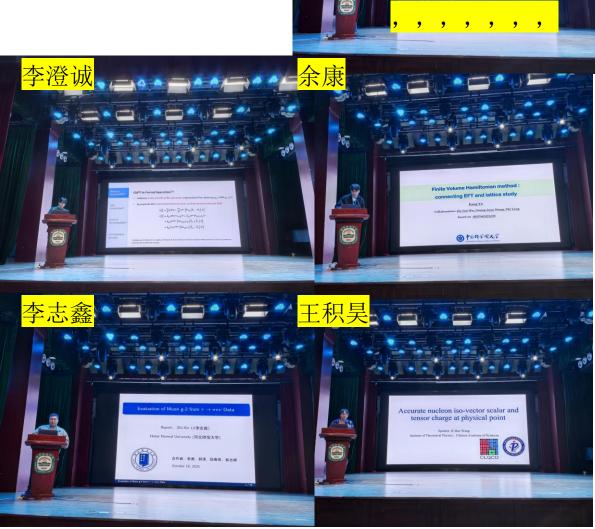


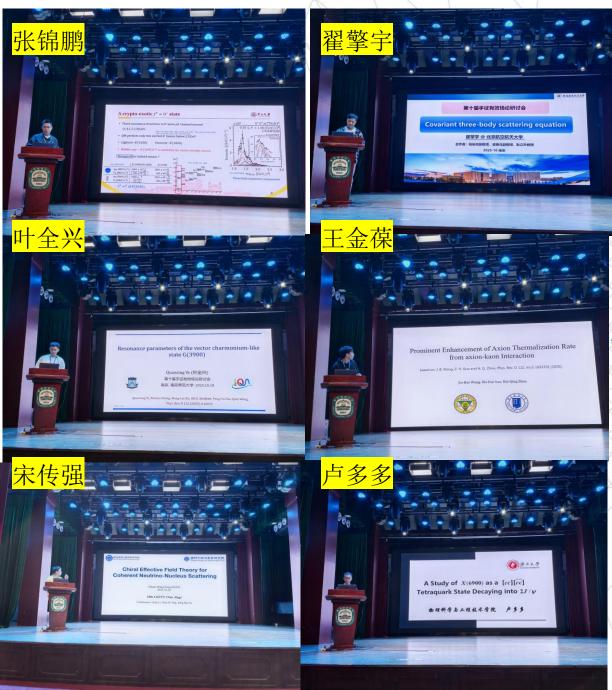
$$q^{\mu} \bar{u}_p \gamma_{\mu} (1 - \gamma_5) u_{\Lambda_b} \rightarrow m_{\Lambda_b} \bar{u}_p (1 + \gamma_5) u_{\Lambda_b}$$
  $\bar{u}_p (1 - \gamma_5) u_{\Lambda_b}$ 

$$S_{\mathcal{T}} \approx P_{\mathcal{T}}$$

$$\bar{u}_p(1+\gamma_5)(\gamma_5 p_\pi)(p_{\Lambda_b} \gamma_5) p_p(1-\gamma_5) u_{\Lambda_b} \rightarrow \bar{u}_p(1-\gamma_5) u_{\Lambda_b}$$

$$S_{PC_2} \approx -P_{PC_2}$$


- ·CPVs of S- and P-waves might be as large as B mesons, but cancelled with each other.
- Baryons have spinors and Dirac structures, and thus partial waves.


J.J.Han, J.X,Yu, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821 (PRL)

Fu-Sheng Yu

# 青年学者 成果展示





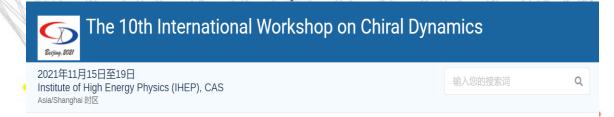


## 国际会议: Chiral Dynamics

International Advisory

Committee

Local Organizing Committee


Working Group

Zoom Information

Conveners

日程表

- ① MIT, 1994
- ② Mainz, 1997
- 3 Jefferson Lab, 2000
- ④ Jefferson Lab, 2012
- ⑤ Bonn, 2003



Thanks to All Participants! See you at CD2024!

In particular thanks to those who have submitted an abstract!!!

10 Beijing, 2021

10th International Workshop on Chiral Dynamics
Nov. 15-19, 2021, ONLINE

- 6 Duke, 2006
- ⑦ Bern, 2009
- ® Jlab, 2012
- 9 Pisa, 2015
- 10 Duke, 2018
- (11) IHEP, 2021
- 2) Bochum 2024

## 国际会议: Chiral

- ① Chiral00: Possible Existence of the Sigma Meson and its Implications to Hadron Physics, YITP (Kyoto University), Japan
- ② Chiral01: Chiral Fluctuations on Hadronic Matter, Orsay, France
- ③ Chiral02: Chiral Restoration in Nuclear Medium, YITP (Kyoto University), Japan
- 4 Chiral05: Chiral Restoration in Nuclear Medium, RIKEN, Japan
- (5) Chiral07: Chiral Symmetry in Hadron and Nuclear Physics, Osaka, Japan
- 6 Chiral10: International Workshop on Chiral Symmetry in Hadrons and Nuclei, Valencia, Spain
- **7** Chiral 13: Chiral symmetry in hadrons and nuclei, Beijing, China

## 国内会议: Chiral EFT

- · 2014--2025
- · 会议顾问委员会:

冯旭(北京大学)、贾宇(中国科学院高能物理研究所)、廖益(华南师范大学)、王青(清华大学)、赵强(中国科学院高能物理研究所)、郑汉青(四川大学)、邹冰松(清华大学)

### 会议组织委员会:

耿立升(北京航空航天大学)、郭奉坤(中国科学院理论物理研究所)、郭志辉(河北师范大学)、梁伟红(广西师范大学)、刘启锐(西安交通大学)、刘言锐(山东大学)、龙炳蔚(四川大学)、马永亮(南京大学)、毛鸿(杭州师范大学)、王恩(郑州大学)、姚德良(湖南大学)、周智勇(东南大学)







### 2016手征有效场论研讨会合影中国性林 2016.10





2017.10.13-17 西安



Chiral EFT-2017年10月13日-10月17日,西安

### 2018年手征有效场论研讨会2018,08,28-2018,09,02



長 长春維納斯专业数码转机摄影 中国摄影家李维宪先生摄影 13331690312 82709763

AND ASSESSMENT OF THE PROPERTY OF THE PROPERTY



## 第七届手征有效场论研讨会合影(南京)

2022年10月14日-10月17日



主办单位:北京大学、北京航空航天大学、广西师范大学、杭州师范大学、吉林大学、

南开大学、清华大学、四川大学、山东大学、西安交通大学、

中国科学院高能物理研究所、中国科学院理论物理研究所

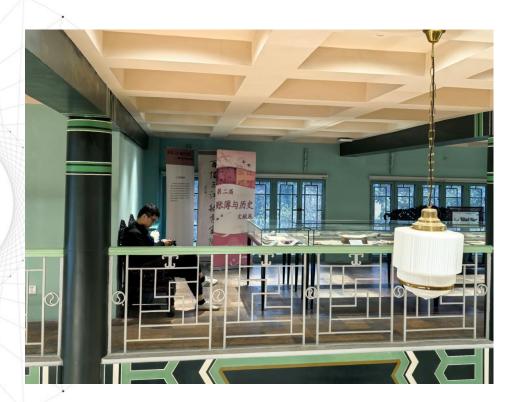
承办单位:东南大学

承办单位:东南大学



## 第九届手征有效场论研讨会




# 感谢地方组委会和志愿者的辛勤付出

地方组织委员会(按学校、姓氏拼音顺序排名):

东南大学: 陈殿勇、陈华星、孟璐、周海清、周智勇

南京大学: 马永亮

南京师范大学: 何秉然、何军、黄虹霞、黄琦、黄日俊、金立刚、李春花、刘宁、卢致廷、王徽、王琦、王烨凡、吴永成、武雷、邢志鹏、易凯、张敬庆、钟彬、朱瑞林



