

QCD Sum Rule Study of Topped Mesons within Heavy Quark Effective Theory

Collaborators: Xuan Luo, Hui-Min Yang, Hua-Xing Chen

Speaker: Shu-Wei Zhang

Southeast University

DOI: 10.3390/universe11100334

2025/10/18

Content

- 01 Introduction
- 02 Method
- 03 Results
- 04 Discussions and Conclusion

01 Introduction

Specificity of Top Quark

➤ Large mass: ~173.57 GeV

 \triangleright Extremely short lifetime: $\sim 5 \times 10^{-25}$ s

 $m_{
m tar t}$ [GeV]

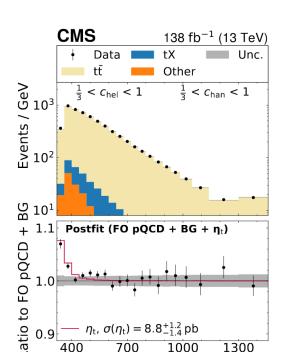
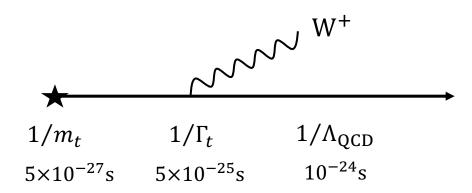
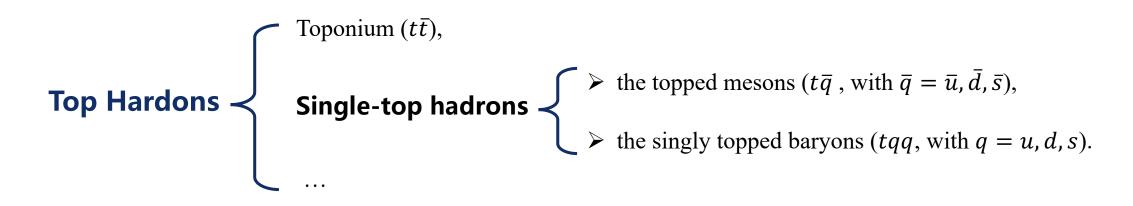



Fig.1 Discovery of Toponium.

The usual consensus is that **top quark cannot form bound states**


Discovery of Toponium $(t\bar{t})$

The CMS Collaboration recently reported an excess in the $t\bar{t}$ invariant mass spectrum near threshold.

[Rept. Prog. Phys. 88 (8) (2025) 087801]

This discovery challenges the traditional views, initiating the exploration of an entirely new top-quark hadron spectrum.

01 Introduction

Advantages of Single-top hadrons

Only one top quark undergoes weak decay, resulting in **longer lifetimes and narrower widths** that improve experimental accessibility.

Advantages of Topped Mesons

- > Simpler quark content
- > Cleaner final states
- ➤ More favorable production and reconstruction prospects.

02 Method

Heavy Quark Effective Theory

 $m_t \gg \Lambda_{QCD}$ The top quark is treated as a static color source.

QCD Sum Rule

> The interpolating currents

$$J(x) = \bar{q}^{a}(x)\gamma_{5}h_{v}^{a}(x), J_{\mu}(x) = \bar{q}^{a}(x)\gamma_{\mu}^{t}h_{v}^{a}(x)$$

> The two-point correlation function

$$\Pi_{\mu\nu}(\omega) = i \int d^4 x \, e^{ik \cdot x} \langle 0 | T [J_{\mu}(x) J_{\nu}^{\dagger}(0)] | 0 \rangle$$

> The sum rule equation are arrived as

$$\overline{\Lambda}(\omega_c, T) = \frac{1}{\Pi(\omega_c, T)} \cdot \frac{\partial \Pi(\omega_c, T)}{\partial (-2/T)}, f^2(\omega_c, T) = \Pi(\omega_c, T) \cdot e^{2\overline{\Lambda}(\omega_c, T)/T}$$

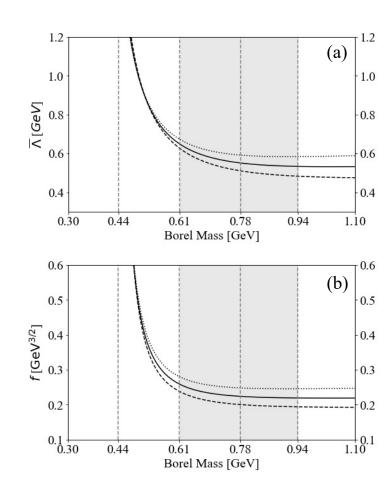
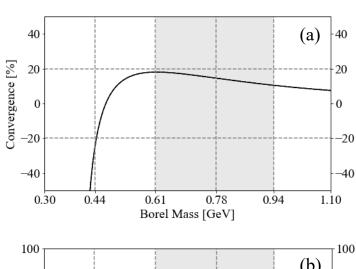


Fig.2 Variations of (a) the residual mass $\overline{\Lambda}$ and (b) the decay constant f with respect to the Borel mass T

02 Method

$$\overline{\Lambda}(\omega_c, T) = \frac{1}{\Pi(\omega_c, T)} \cdot \frac{\partial \Pi(\omega_c, T)}{\partial (-2/T)}, f^2(\omega_c, T) = \Pi(\omega_c, T) \cdot e^{2\overline{\Lambda}(\omega_c, T)/T}$$

Two free parameters: the threshold value ω_c and the Borel mass T.


QCD Sum Rule Criteria

- \triangleright The convergence of OPE $\leq 20\%$
- \triangleright the pole contribution $\ge 40\%$
- > the Borel stability condition

$\mathcal{O}ig(1/m_Qig)$ corrections

We extend our analysis to incorporate $\mathcal{O}(1/m_Q)$ corrections to evaluate the mass correction δm . Finally, the mass of the ground-state T_s^{\star} meson is given by

$$m_{T_s^{\star}} = m_t + \overline{\Lambda} + \delta m$$

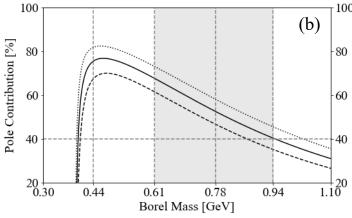


Fig.3 Variations of (a) the convergence parameter, (b) the pole contribution with respect to the Borel mass *T*

03 Results

Table 1. Parameters of ground-state topped mesons calculated using QCD sum rules within the HQET framework. The states $T^{(\star)}$ and $T_s^{(\star)}$ contain the quark contents $t\bar{q}(\bar{q}=\bar{u}/\bar{d})$ and $t\bar{s}$, respectively.

	ω_c	Working region	$\overline{\Lambda}$	Meson	Mass	Difference	f	Decay channels
	(GeV)	(GeV)	(GeV)	(J^P)	$({ m GeV})$	(MeV)	$(\mathrm{GeV}^{3/2})$	Decay chamicis
$T^{(*)}$	1.65	$0.79 \le T \le 0.89$	$0.46^{+0.07}_{-0.07}$	$T (0^{-})$	$173.03^{+0.30}_{-0.30}$	$0.12^{+0.04}_{-0.04}$	$0.19^{+0.02}_{-0.02}$	$\Upsilon D^{(*)},ar{B}_{c}^{(*)}B^{(*)},$
				T^{\star} (1^{-})	$173.03^{+0.30}_{-0.30}$			$B_s^{(*)}D^{(*)}, D_s^{(*)}B^{(*)}$
$T_s^{(*)}$	1.85	$0.61 \le T \le 0.94$	$0.55^{+0.12}_{-0.07}$	$T_s \ (0^-)$	$173.12^{+0.31}_{-0.30}$	$0.11^{+0.04}_{-0.04}$	$0.22^{+0.04}_{-0.03}$	$\Upsilon D_s^{(*)}, ar{B}_c^{(*)} B_s^{(*)},$
				T_s^{\star} (1 ⁻)	$173.12^{+0.31}_{-0.30}$			$B_s^{(*)}D_s^{(*)}$

- ➤ Mass: ~173.1GeV, approximately 0.5~0.6GeV above the top quark's pole mass.
- Decay Channels: weakly into a Υ meson and a charmed meson, as shown in Fig.4.

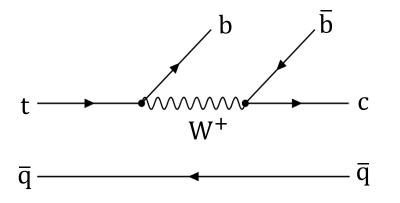
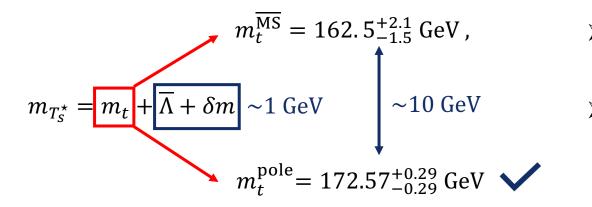



Fig.4 Feynman diagram of topped meson decay

04 Discussions and Conclusion

The Choice of Renormalization Scheme for m_t

- ➤ Due to the large mass of the top quark, its pole mass is closer to the mass of the bare quark.
- ➤ Once electroweak corrections are included, the MS top-quark mass approaches the pole mass.

Conclusion

- This work presents the first application of QCD sum rules within the HQET framework to mesonic systems containing a top quark.
- ➤ A precise mass prediction of 173.1 GeV is given, along with clean experimental channels.

Thanks for your attention!

