The 10th Workshop on Chiral Effective Field Theory (Nanjing)

A Study of X(6900) as a $[cc][\bar{c}\bar{c}]$ Tetraquark State

Decaying into $2J/\psi$

Duo-Duo Lu, Shao-Zhou Jiang

School of Physical Science and Technology, Guangxi University

ABSTRACT

In this work, the decay width of $X(6900) \rightarrow 2J/\psi$ has been calculated within a covariant quark model, assuming its structure is described by the diquark-antidiquark model. The possible quantum numbers $J^{PC} = 0^{-+}$, 0^{--} , 1^{-+} , 1^{--} are considered. However, the quantum numbers $J^{PC} = 0^{--}$, 1^{--} do not allow decay in this channel in the lowest-order perturbation theory. The corresponding decay widths for $J^{PC} = 0^{-+}$ and $J^{PC} = 1^{-+}$ are $\Gamma = 60 \sim 120$ MeV and $1.0 \sim 1.4$ MeV respectively. The quantum number $J^{PC} = 0^{-+}$ is consistent with the experimental observations.

INTRODUCTION

Since the experimental discovery of the first exotic hadron state X(3872) in 2003, a large number of new hadronic states have been observed. This work studies the recently discovered fully heavy tetraquark state candidate X(6900) and calculates its decay width for the process $X(6900) \rightarrow 2J/\psi$ to compare with experimental results. The corresponding experimental values are presented in the table on the right.

Collaboration	Model	m	Γ	Observed Channel
LHCb	No-Interference Interference	$6905 \pm 11 \pm 7$ $6886 \pm 11 \pm 11$		$2J/\psi$
ATLAS	Model A Model B	$6860 \pm 30^{+10}_{-20}$ $6910 \pm 10 \pm 10$	10	$2J/\psi$
CMS	Interference No-Interference	6847^{+44+48}_{-28-20} $6927 \pm 9 \pm 4$	191^{+66+25}_{-49-17} $122^{+24}_{-21} \pm 18$	$2J/\psi$

THEORETICAL METHOD

This work uses the covariant quark model, which is widely used to calculate hadron decays and electromagnetic properties, to calculate the decay width of $X(6900) \rightarrow 2J/\psi$. The effective interaction Lagrangian is written in the form

$$\mathcal{L}_{\text{int}} = g_X X(x) \cdot J_X(x) + g_{J/\psi} \psi_{\mu}(x) \cdot J_{J/\psi}^{\mu}(x) + \text{H.c.}$$

The four-quark current and vector meson current are defined as follows

$$J_{X}(x) = \int d^{4}x_{1} \dots \int d^{4}x_{4} \,\delta\left(x - \sum_{i=1}^{4} w_{i}x_{i}\right) \Phi_{X}\left(\sum_{i < j} (x_{i} - x_{j})^{2}\right) j_{4c}(x_{1}, x_{2}, x_{3}, x_{4})$$

$$J_{J/\psi}^{\mu}(x) = \int d^{4}y \,\Phi_{J/\psi}(y^{2}) \overline{c}_{a}(x + y/2) \gamma^{\mu} c_{a}(x - y/2)$$

All four-quark current j_{4c} used in this article are as follows

$$J^{PC} = \mathbf{0}^{-+}: \quad \mathbf{j}_1 = \mathbf{i}[c_a^T C c_b][\overline{c}_a \gamma^5 C \ \overline{c}_b^T] + \mathbf{i}[c_a^T C \gamma^5 c_b][\overline{c}_a C \ \overline{c}_b^T]$$

$$J^{PC} = \mathbf{0}^{--}: \quad j_2 = [\mathbf{c}_a^T \mathbf{C} \mathbf{c}_b][\overline{\mathbf{c}}_a \boldsymbol{\gamma}^5 \mathbf{C} \ \overline{\mathbf{c}}_b^T] - [\mathbf{c}_a^T \mathbf{C} \boldsymbol{\gamma}^5 \mathbf{c}_b][\overline{\mathbf{c}}_a \mathbf{C} \ \overline{\mathbf{c}}_b^T]$$

$$J^{PC} = \mathbf{1}^{-+}: \quad j_3^{\mu} = i[c_a^T C \gamma^{\mu} \gamma^5 c_b][\overline{c}_a \gamma^5 C \ \overline{c}_b^T] + i[c_a^T C \gamma^5 c_b][\overline{c}_a \gamma^{\mu} \gamma^5 C \ \overline{c}_b^T]$$

$$\boldsymbol{J}^{PC} = \boldsymbol{1}^{--}: \quad \boldsymbol{j}_{4}^{\mu} = [\boldsymbol{c}_{a}^{T} \boldsymbol{C} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{5} \boldsymbol{c}_{b}] [\overline{\boldsymbol{c}}_{a} \boldsymbol{\gamma}^{5} \boldsymbol{C} \ \overline{\boldsymbol{c}}_{b}^{T}] - [\boldsymbol{c}_{a}^{T} \boldsymbol{C} \boldsymbol{\gamma}^{5} \boldsymbol{c}_{b}] [\overline{\boldsymbol{c}}_{a} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{5} \boldsymbol{C} \ \overline{\boldsymbol{c}}_{b}^{T}]$$

The Fourier transform of the function Φ_X is

$$\Phi_X(y_1^2 + y_2^2 + y_3^2) = \prod_{i=1}^3 \int \frac{d^4k_i}{(2\pi)^4} \phi_X(k_1^2 + k_2^2 + k_3^2) e^{-i(k_1 \cdot y_1 + k_2 \cdot y_2 + k_3 \cdot y_3)}$$

Choosing the Gaussian form of the ϕ_X

$$\phi_X(k^2) = e^{k^2/\Lambda_X^2}$$

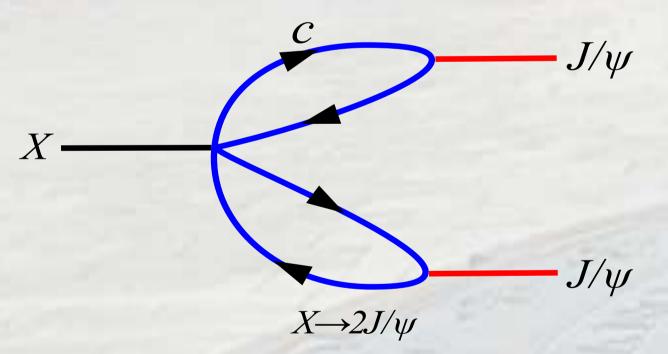
The coupling constant g_X is determined by the normalization condition called the compositeness condition

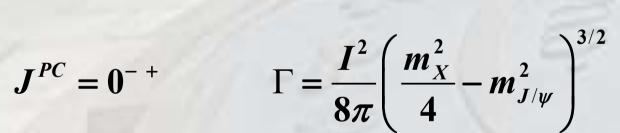
$$1-g_X^2 \frac{d\Pi_X(s)}{ds}\bigg|_{s=m_X^2} = 0$$

The function Π_X is defined as

$$\Pi_X(p^2) = i \int d^4x e^{ip \cdot x} \langle 0 | TJ_X(x)J_X^{\dagger}(0) | 0 \rangle \quad \text{spin} \quad 0$$

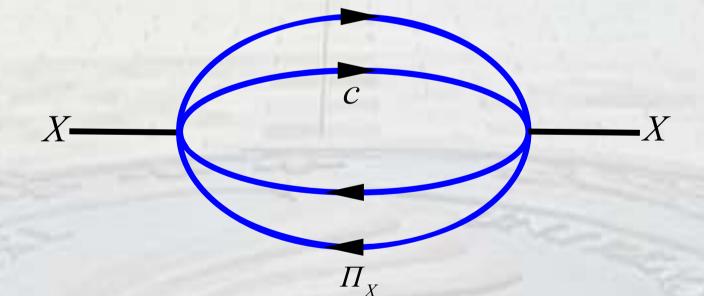
$$\Pi_X^{\mu\nu}(p^2) = i \int d^4x e^{ip\cdot x} \langle 0 | TJ_X^{\mu}(x) J_X^{\nu\dagger}(0) | 0 \rangle \quad \text{spin} \quad 1$$

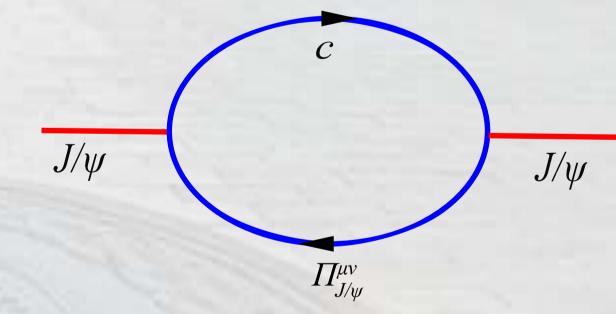




$$J^{PC} = 1^{-+} \qquad \Gamma = \frac{K_1^2}{192\pi} \frac{(m_X^2 / 4 - m_{J/\psi}^2)^{3/2}}{m_{J/\psi}^2}$$

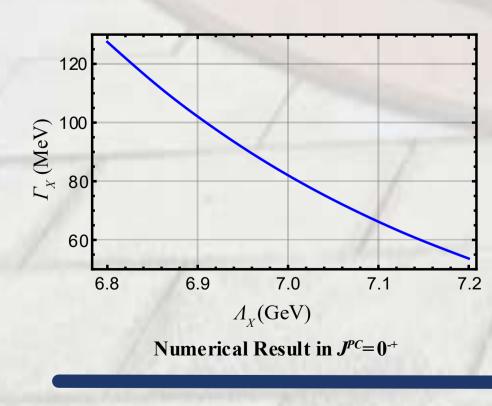
 $J^{PC} = 0^{--}, 1^{--} \Gamma = 0$



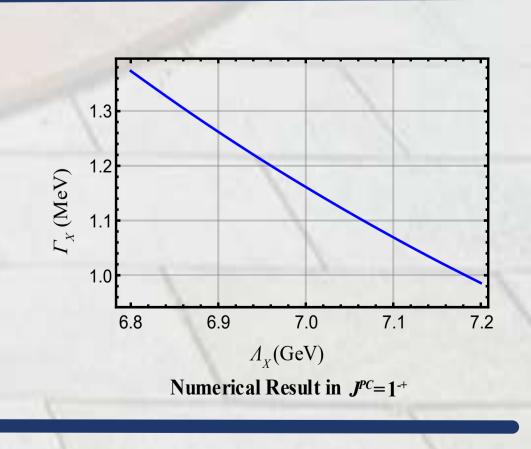


These three Feynman diagrams constitute the core part of the calculations in this work, the most complicated one is the three-loop banana diagram, and the calculation results of the Feynman diagram for the decay process are shown on the left.

NUMERICAL RESULTS



The figure on the left shows the decay width curve for the process $X(6900) \rightarrow 2J/\psi$, which decreases smoothly. The decay width Γ_X varies from 60 to 120 MeV for Λ_X = 6.8 ~ 7.2 GeV, which is consistent with experiments. In contrast, the figure on the right shows that Γ_X is on the scale of 1 MeV, which is clearly inconsistent with experiments.



SUMMARY AND CONCLUSION

This work employs the covariant quark model, which incorporates infrared confinement in an effective way, in order to study the decay process $X(6900) \rightarrow 2J/\psi$. By treating the X(6900) as a tetraquark state with a diquark-antidiquark configuration, the corresponding transition matrix element and decay width are calculated. The results show that if the quantum number of X(6900) is $J^{PC} = 0^{--}$ or 1^{--} , the state cannot decay into $2J/\psi$ within the lowest-order perturbation approximation.

勤恩機诚厚學致新

Email:1696675387@qq.com