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Ay PUZZLE

Red: NR N3LO chiral NN potential
Blue: NR N3LO chiral NN + full 3N potential

Ø Consider the lowest order of the three-body nuclear force – 

cannot solve the Ay puzzle [1]; 

Ø Higher order three-body contact terms – numerical difficulties 

& converge slow in terms of the chiral order. 

One has to write the most general Lagrangian
consistent with the assumed symmetry principles, 
particularly the (broken) chiral symmetry of QCD. 

Steven Weinberg
(Nobel Prize 1979)

Covariant chiral nuclear force – LO

COVARIANT CHIRAL NUCLEAR FORCE 

Ø Consider the break-up process of nd scattering, 
    label the three particles 1,2 and 3 (top to bottom)

superscript (1,3) means 
in the initial state particle 1 is free, and
in the last interaction particle 3 is free. 

The deuteron wave-function has the form 𝝍 = 𝒗𝑮𝝍,

thus diagrams like                  are already taken into account. 

𝑻(𝟏,𝟏)𝑮𝟏𝝍𝟏 =	 𝒕𝟏𝑮𝟏 𝑻(𝟏,𝟐) + 𝑻(𝟏,𝟑) 𝑮𝟏𝝍𝟏
𝑻(𝟏,𝟐)𝑮𝟏𝝍𝟏 = 𝒕𝟐(𝑮𝟑𝝍𝟏 + 𝒕𝟐𝑮𝟐 𝑻(𝟏,𝟏) + 𝑻(𝟏,𝟑) 𝑮𝟏𝝍𝟏
𝑻(𝟏,𝟑)𝑮𝟏𝝍𝟏 = 𝒕𝟑(𝑮𝟐𝝍𝟏 + 𝒕𝟑𝑮𝟑 𝑻(𝟏,𝟏) + 𝑻(𝟏,𝟐) 𝑮𝟏𝝍𝟏

similar equations for the permutation of (123).  

Ø Actually, the three nucleons are identical particles 
    (with isospin 1/2)

• Operators with different subscripts 
    connected with permutation operator; 
• Antisymmetrize the wave fuction. 
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where 𝑻𝒊𝝓𝟏 ≡ ∑𝒌𝑻(𝒌,𝒊)𝝓𝒌, 𝝓𝒊 ≡ 𝑮𝒊𝝍𝒊. 

,
𝒕𝟐 = 𝑷𝟏𝟐𝟑𝒕𝟏𝑷𝟏𝟐𝟑)𝟏

𝒕𝟑 = 𝑷𝟏𝟑𝟐𝒕𝟏𝑷𝟏𝟑𝟐)𝟏           three equations are not independent

𝑻𝝓 = 𝒕𝑷
𝑬𝒑
𝒎 𝟐𝝅 𝟑𝝓+ 𝒕𝑷𝑮𝑻𝝓

• 𝑬𝒑
𝒎  is a kinematic relativistic correction operator; 

• 𝟐𝝅 𝟑 is from the convention of Feynman rules; 
• 𝑷 ≡ 𝑷𝟏𝟐𝟑 + 𝑷𝟏𝟑𝟐 is the permutation operator;  
• 𝝓 = 𝑮𝒗𝝓       the same form as in NR scheme. 

Ø For elastic scattering
• Set the final state as 𝝓; 
• Add the nucleon-exchange term

𝝓3𝑼𝝓 = 𝝓3𝑷𝒗
𝑬𝒒
𝒎 𝟐𝝅 𝟑𝝓+𝝓3𝑷𝒕𝑮𝑼𝝓

where 𝑮 = 𝟏
𝟐𝝅 𝟑

𝒎𝟐

𝑬𝒑𝟐
𝟏

𝒔)𝑬𝒒
𝟐)𝒒𝟐)𝟐𝑬𝒑/𝒊𝝐

 

Ø Difficulties

logarithmic singularities complex interpolation caused 
by permutation operator

COVARIANT THREE-BODY SCATTERING EQUATION [3,4]

WAVE-PACKET CONTINUUM DISCRETIZATION (WPCD) METHOD [5-9]

The continuous plane wave basis is coarse-grained into square-integrable basis that smooths out all singularities. 

Wave-packet basis

Ø Choose a momentum cutoff pcut and discretize 
continuous momenta – Chebyshev grid

𝒑𝒏 = 𝒑𝒔𝐭𝐚𝐧
𝒏

𝑵 + 𝑵𝐚𝐝𝐝 + 𝟏
𝝅
𝟐
, 𝒏 = 𝟎, 𝟏, 𝟐,⋯ ,𝑵,	

𝒑𝒔 =
𝒑𝐜𝐮𝐭

𝐭𝐚𝐧 𝑵
𝑵 + 𝑵𝒂𝒅𝒅 + 𝟏

𝝅
𝟐
,

Ø Define a set of free wave-packet basis as

set 𝒑𝐜𝐮𝐭 = 𝟒. 𝟎 GeV, 𝑵𝐚𝐝𝐝 = 𝟐 and 𝑵 = 𝟏𝟓𝟎.  

| ⟩𝒑𝒊 =
𝟏
𝑵𝒊
C
𝓓𝒊
𝒑𝐝𝒑 	𝒇 𝒑 | ⟩𝒑

where 𝑵𝒊 is the normalization factor and 𝓓𝒊 = 𝒑𝒊)𝟏, 𝒑𝒊 . 

We use the energy wave-packet, i.e. 𝒇 𝒑 = 𝒑
𝑬𝒑
	. 

Partial-wave representation

Ø Work in the partial-wave (LS) representation
| ⟩𝒑𝒎𝒒𝒊𝜸 ≡ | ⟩𝒑𝒎𝒒𝒊 𝒍𝒔 𝒋 𝒋𝒔𝟏 𝜮 𝝀𝜮 𝑱𝑴 𝒕𝒕𝟏 𝑻𝝉𝑻

we fixed 𝑻 = 𝟏
𝟐 and 𝝉𝑻 = − 𝟏

𝟐	.

and 𝑺𝝀𝜮,𝝀&𝜮&
𝑱𝑷 = 𝜹𝝀𝝀&𝜹𝜮𝜮& − 𝒊𝝅

𝒒
𝟐𝝅 𝟑

𝟖𝒎𝟐

𝒎𝒅

𝑬𝒒
𝒔
𝑼𝝀𝜮,𝝀&𝜮&
𝑱𝑷 	, 

𝓜𝒎𝒅𝒎𝒏,𝒎𝒅
#𝒎𝒏

# 𝜽 =
𝟐𝝅𝒊
𝒒
(
𝑱,𝑷

(
𝝀𝜮
𝝀#𝜮#

(
𝒎𝜮,𝒎𝜮#
𝒎𝝀,𝑴

𝝀𝒎𝝀𝚺𝒎𝜮 𝑱𝑴 𝒋𝒅𝒎𝒅𝒔𝒏𝒎𝒏 𝚺𝒎𝜮

𝝀0𝟎𝜮0𝒎𝜮# 𝑱𝑴 𝒋𝒅𝒎𝒅
0 𝒔𝒏𝒎𝒏

0 𝜮0𝒎𝜮#
𝟐𝝀0 + 𝟏
𝟒𝝅 𝒀𝝀𝒎𝝀 𝜽, 𝟎 𝑺𝝀𝜮,𝝀#𝜮#

𝑱𝑷 − 𝜹𝝀𝝀#𝜹𝜮𝜮#

Ø Using the spin-scattering matrix

we calculate the observables
𝐝𝝈
𝐝𝜴 =

𝟏
𝟔𝐓𝐫(𝓜𝓜@) 𝑨𝒚 𝒏 =

𝐓𝐫(𝓜𝝈𝒚𝓜@)
𝐓𝐫(𝓜𝓜@)

Operators under wave-packet basis

Ø Deuteron pole

𝒑𝒎𝒒𝒊𝜸 𝒕 𝒑𝒏𝒒𝒋𝜸0  = 𝟏
𝓝 ∫𝒑𝐝𝒑	𝒑

0𝐝𝒑0	𝐝𝑬𝒒
𝒑𝒑#

𝑬𝒑𝑬𝒑#

5𝒕(𝒑,𝒑#; 𝒔𝟐)
𝒔𝟐;𝒎𝒅<𝒊𝝐

where 𝒔𝟐 = 𝒔 +𝒎𝟐 − 𝟐 𝒔𝑬𝒒	. 

Using the complex spectator momentum contour

Ø Covariant permutation operator 
𝚪𝑺𝑴𝑪 𝑬𝒒 = 𝑬𝒒 + 𝒊𝑽𝟎 𝟏 − 𝒆

𝑬𝒒𝒊+𝟏;𝑬𝒒
𝒘 𝟏 − 𝒆

𝑬𝒒;𝑬𝒒𝒊
𝒘

In relativistic scheme, this 
diagram should be viewed 
through the lens of 
noneuclidean geometry. 

Ø Truncate the angular momentum as 𝒋 ≤ 𝟐 and 𝑱 ≤ 𝟏𝟕
𝟐  [10]. Dimension of the matrices ~ 105, thus we employ the epsilon algorithm [11] to accelerate the Neumann series; 

Ø We calculate the nd elastic scattering in the nonrelativistic scheme with EKM chiral nuclear force at different order as a benchmark; 
Ø We do the same calculation using our equation with the covariant NN forces at LO. The results show that covariant LO NN force describes the three-body observables 

much better than the NR one; 
Ø Although the ⁄𝝌̀𝟐 𝐝. 𝐨. 𝐟. of R-LO is comparable 
    to those of NR-NLO, they provide a noticeably 
    poorer description of the three-body 
    observables – the results may be sensitive to 
    certain partial waves like 𝟑𝑺𝟏 − 𝟑𝑫𝟏 and 𝟑𝑷𝟐, 
    which will be studied in future work. 
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Total ⁄E𝝌𝟐 𝐝. 𝐨. 𝐟. 𝟏𝑺𝟎 𝟑𝑷𝟎 𝟏𝑷𝟏 𝟑𝑷𝟏 𝟑𝑺𝟏 𝟑𝑫𝟏 𝝐𝟏 𝟏𝑫𝟐 𝟑𝑫𝟐 𝟑𝑷𝟐 𝟑𝑭𝟐 𝝐𝟐
LO 841.49 8.77 47.36 10.41 108.51 248.87 8.59 85.65 25.41 46.42 33.02 219.72 0.002 7.52

NR-LO 2666.9 27.78 674.01 391.53 434.08 288.28 166.02 60.55 56.10 51.46 70.52 474.30 0.01 0.03

NR-NLO 392.13 4.08 11.64 126.26 56.50 53.03 0.67 3.41 3.69 32.04 99.57 3.76 0.01 1.55

𝝌̀𝟐 = ∑𝒊 𝜹𝒊 − 𝜹𝐏𝐖𝐀𝟗𝟑𝒊 𝟐
of different chiral forces (𝑬𝐥𝐚𝐛 ≤ 𝟐𝟎𝟎	𝐌𝐞𝐕, 𝒋 ≤ 𝟐).

For LO and NR-LO, the fit was performed up to 𝑬𝐥𝐚𝐛 ≤ 𝟏𝟎𝟎	𝐌𝐞𝐕 and 𝒋 ≤ 𝟏. 

ü We constructed the covariant three-body scattering equation, which can be 
reduced to the well-known Faddeev-AGS equation in the nonrelativistic limit; 

ü In  nd  elastic  scattering,  covariant  NN  forces  at  LO  can reproduce the
experimental data better than the NR one; 

p The same calculation with covariant NN forces at higher order need to be 
completed – NN forces without energy in c.m.s; 

p Check if the 𝟑𝑺𝟏 − 𝟑𝑫𝟏 channel plays an important role; 
p Breakup process & pd scattering. 


