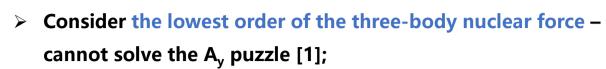
第十届手征有效场论研讨会 2025-10, 南京

Covariant three-body scattering equation

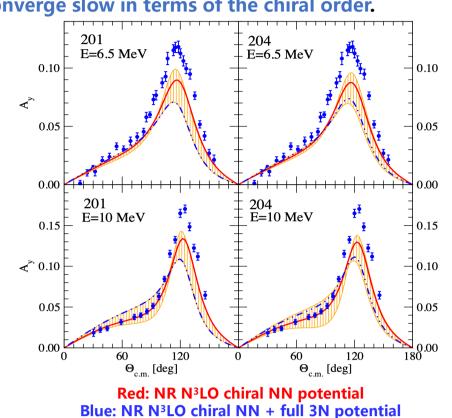
Introduction

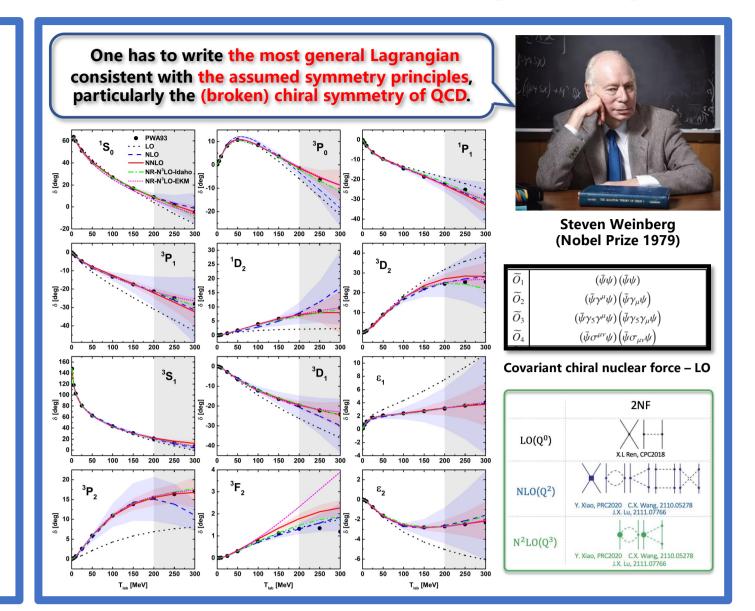
A, PUZZLE

COVARIANT CHIRAL NUCLEAR FORCE



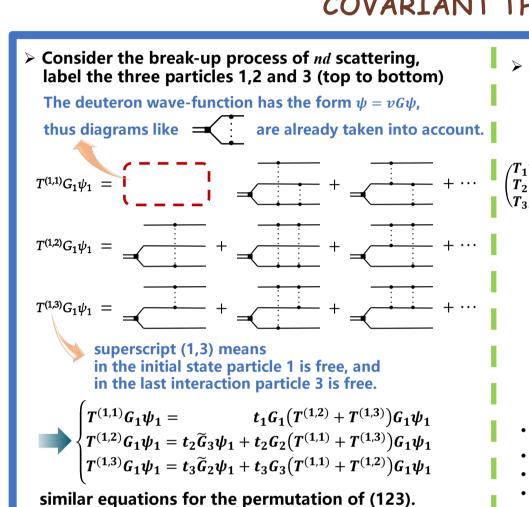
- **Higher order three-body contact terms numerical difficulties**
 - & converge slow in terms of the chiral order.





Theoretical Formalism

COVARIANT THREE-BODY SCATTERING EQUATION [3,4]



- > Actually, the three nucleons are identical particles (with isospin 1/2)
 - Operators with different subscripts connected with permutation operator;
- Antisymmetrize the wave fuction. $\begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} \phi_1 = \begin{pmatrix} t_1(P_{123} + P_{132}) \\ t_2(P_{132} + \mathbb{I}) \\ t_3(\mathbb{I} + P_{123}) \end{pmatrix} \frac{E_p}{m} (2\pi)^3 \phi_1 + \begin{pmatrix} 0 & t_1 & t_1 \\ t_2 & 0 & t_2 \\ t_3 & t_3 & 0 \end{pmatrix} G_i \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} \phi_1$

where
$$T_i\phi_1\equiv\sum_k T^{(k,i)}\,\phi_k,\,\phi_i\equiv G_i\psi_i.$$

 $\begin{cases} t_2 = P_{123}t_1P_{123}^{-1} \\ t_3 = P_{132}t_1P_{132}^{-1} \end{cases}$ three equations are not independent

$$T\phi = tP\frac{E_p}{m}(2\pi)^3\phi + tPGT\phi$$

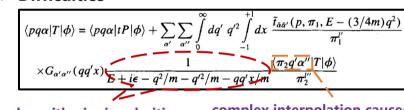
- $\frac{E_p}{m}$ is a kinematic relativistic correction operator;
- $(2\pi)^3$ is from the convention of Feynman rules;
- $P \equiv P_{123} + P_{132}$ is the permutation operator; $\phi = Gv\phi$ the same form as in NR scheme.

- > For elastic scattering
 - Set the final state as φ; Add the nucleon-exchange term

$$\phi^{\dagger}U\phi = \phi^{\dagger}Pv\frac{E_q}{m}(2\pi)^3\phi + \phi^{\dagger}PtGU\phi$$

where
$$G=rac{1}{(2\pi)^3}rac{m^2}{E_p^2}rac{1}{\sqrt{\left(\sqrt{s}-E_q
ight)^2-q^2}-2E_p+i\epsilon}$$

> Difficulties



complex interpolation caused logarithmic singularities by permutation operator

WAVE-PACKET CONTINUUM DISCRETIZATION (WPCD) METHOD [5-9]

The continuous plane wave basis is coarse-grained into square-integrable basis that smooths out all singularities.

Wave-packet basis

 \succ Choose a momentum cutoff p_{cut} and discretize continuous momenta – Chebyshev grid

$$p_n = p_s \tan\left(\frac{n}{N + N_{\text{add}} + 1} \frac{\pi}{2}\right), n = 0, 1, 2, \dots, N,$$

$$p_s = \frac{p_{\text{cut}}}{\tan\left(\frac{N}{N + N_{\text{add}} + 1} \frac{\pi}{2}\right)},$$

set $p_{\text{cut}} = 4.0$ GeV, $N_{\text{add}} = 2$ and N = 150.

> Define a set of free wave-packet basis as

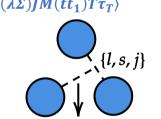
$$|p_i\rangle = \frac{1}{N_i} \int_{\mathcal{D}_i} p \mathrm{d}p \ f(p) |p\rangle$$

where N_i is the normalization factor and $\mathcal{D}_i = [p_{i-1}, p_i]$. We use the energy wave-packet, i.e. $f(p) = \sqrt{\frac{p}{E_p}}$.

Partial-wave representation

➤ Work in the partial-wave (*LS*) representation $|p_m q_i \gamma\rangle \equiv |p_m q_i(ls)j(js_1)\Sigma(\lambda \Sigma)JM(tt_1)T\tau_T\rangle$

we fixed $T=\frac{1}{2}$ and $\tau_T=-\frac{1}{2}$.



Using the spin-scattering matrix

$$\mathcal{M}_{m_{d}m_{n},m'_{d}m'_{n}}(\theta) = \frac{2\pi i}{q} \sum_{J,P} \sum_{\substack{\lambda \Sigma \\ \lambda' \Sigma'}} \sum_{\substack{m_{\Sigma},m_{\Sigma'} \\ m_{\lambda},M}} \langle \lambda m_{\lambda} \Sigma m_{\Sigma} | JM \rangle \langle j_{d}m_{d}s_{n}m_{n} | \Sigma m_{\Sigma} \rangle$$

$$\langle \lambda' 0 \Sigma' m_{\Sigma'} | JM \rangle \langle j_{d}m'_{d}s_{n}m'_{n} | \Sigma' m_{\Sigma'} \rangle \sqrt{\frac{2\lambda' + 1}{4\pi}} Y_{\lambda m_{\lambda}}(\theta,0) \left(S_{\lambda \Sigma,\lambda' \Sigma'}^{J^{P}} - \delta_{\lambda \lambda'} \delta_{\Sigma \Sigma'} \right)$$

$$3 \frac{p}{q'}$$

and $S^{J^P}_{\lambda \Sigma, \lambda' \Sigma'} = \delta_{\lambda \lambda'} \delta_{\Sigma \Sigma'} - i \pi rac{q}{(2\pi)^3} rac{8m^2}{m_d} rac{E_q}{\sqrt{s}} U^{J^P}_{\lambda \Sigma, \lambda' \Sigma'}$, we calculate the observables

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{6}\mathrm{Tr}(\mathcal{M}\mathcal{M}^{\dagger}) \quad A_{y}(n) = \frac{\mathrm{Tr}(\mathcal{M}\sigma_{y}\,\mathcal{M}^{\dagger})}{\mathrm{Tr}(\mathcal{M}\mathcal{M}^{\dagger})}$

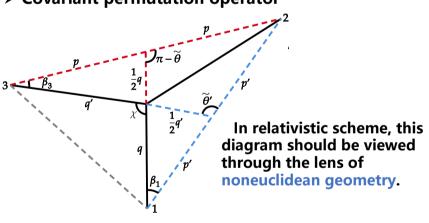
Operators under wave-packet basis

> Deuteron pole

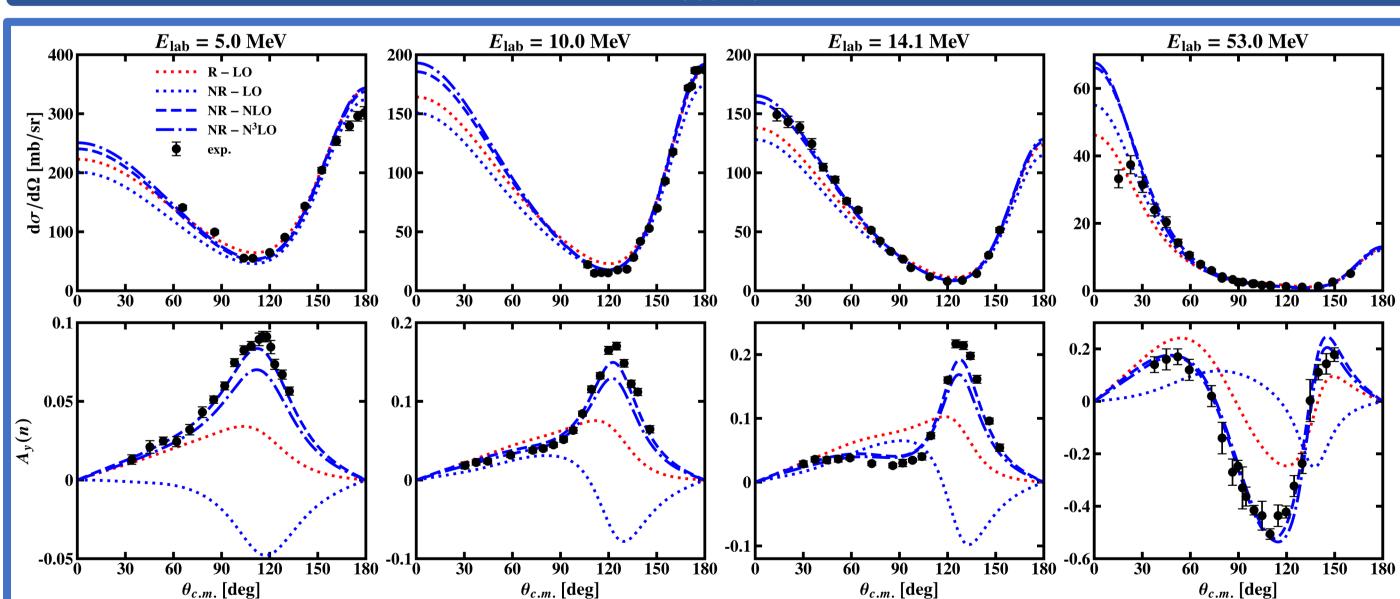
 $\left\langle p_m q_i \gamma \middle| t \middle| p_n q_j \gamma' \right\rangle = rac{1}{N} \int p \, \mathrm{d}p \; p' \, \mathrm{d}p' \; \mathrm{d}E_q \sqrt{rac{pp'}{E_p E_{n'}}} rac{ ilde{t}(p_i p'; \sqrt{s_2})}{\sqrt{s_2} - m_d + i\epsilon}$ where $\sqrt{s_2} = \sqrt{s + m^2 - 2\sqrt{s}E_q}$. Using the complex spectator momentum contour

 $\Gamma_{SMC}(E_q) = E_q + iV_0 \left(1 - e^{\frac{E_{q_{i-1}} - E_q}{W}}\right) \left(1 - e^{\frac{E_q - E_{q_i}}{W}}\right)$

> Covariant permutation operator



Results



- > Truncate the angular momentum as $j \le 2$ and $J \le \frac{17}{2}$ [10]. Dimension of the matrices ~ 10⁵, thus we employ the epsilon algorithm [11] to accelerate the Neumann series;
- > We calculate the nd elastic scattering in the nonrelativistic scheme with EKM chiral nuclear force at different order as a benchmark;
- > We do the same calculation using our equation with the covariant NN forces at LO. The results show that covariant LO NN force describes the three-body observables much better than the NR one;

> Although the $\tilde{\chi}^2/d$. o. f. of R-LO is comparable to those of NR-NLO, they provide a noticeably _ poorer description of the three-body observables - the results may be sensitive to

 $\tilde{\chi}^2 = \sum_i (\delta^i - \delta^i_{PWA93})^2$ of different chiral forces ($E_{lab} \leq 200$ MeV, $j \leq 2$). For LO and NR-LO, the fit was performed up to $E_{\rm lab} \le 100$ MeV and $j \le 1$. Total $\tilde{\chi}^2/d$. o. f.

${}^{3}P_{1}$ 3F_2 $^{1}S_{0}$ 3P_0 $^{1}P_{1}$ ϵ_2 LO 46.42 33.02 219.72 0.002 841.49 8.77 | 47.36 10.41 108.51 248.87 8.59 85.65 25.41 7.52 certain partial waves like ${}^3S_1 - {}^3D_1$ and 3P_2 , 70.52 474.30 0.01 2666.9 27.78 | 674.01 288.28 | 166.02 56.10 51.46 which will be studied in future work. 391.53 434.08 60.55 0.03 NR-LO 99.57 3.76 NR-NLO 392.13 4.08 **11.64** 126.26 53.03 \ 0.67 3.69 32.04 0.01 1.55 56.50 3.41

Summary & Outlook

- ✓ We constructed the covariant three-body scattering equation, which can be reduced to the well-known Faddeev-AGS equation in the nonrelativistic limit; \checkmark In *nd* elastic scattering, covariant NN forces at LO can reproduce the experimental data better than the NR one;
- ☐ The same calculation with covariant NN forces at higher order need to be completed - NN forces without energy in c.m.s;
- \square Check if the ${}^3S_1 {}^3D_1$ channel plays an important role; ☐ Breakup process & pd scattering.

References

- [1] J. Golak et al., Eur. Phys. J. A 50 (2014) 177 [2] Jun-Xu Lu et al., Phys. Rev. Lett. 128 (2022) 14, 142002 [3] W. Gloeckle et al., Phys. Rept. 274 (1996) 107-285
- [4] J. Carbonell et al., Nucl. Phys. A 581 (1995) 625-653 [5] O.A. Rubtsova et al., Annals Phys. 360 (2015) 613-654 [6] Yu-Chuan Feng et al. *Phys.Rev.D* 110 (2024) 094002

[7] A. Stadler et al., *Phys.Rev.C* 56 (1997) 2396

- [8] G.C. Wick, Annals Phys. 18 (1962) 65-80 [9] A. McKerrell, *Il Nuovo Cimento* 34 (1964) 1289-1305
- [10] Sean B.S. Miller et al., Phys. Rev. C 106 (2022) 2, 024001 [11] P.R. Graves-Morris et al., J. Comput. Appl. Math. 122 (2000) 1, 51-80