

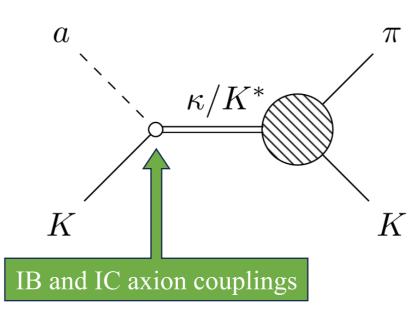
Prominent Enhancement of Axion Thermalization Rate from axion-kaon Interaction

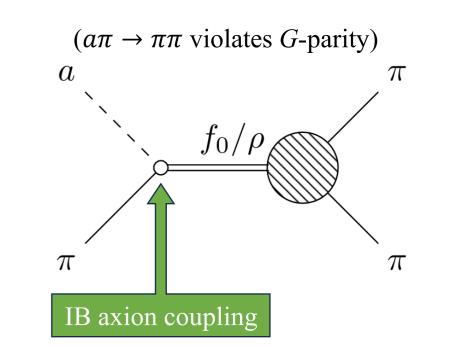
Jin-Bao Wang,^{1,2} Zhi-Hui Guo,² Hai-Qing Zhou¹

¹Department of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China

²School of Physics, Southeast University, Nanjing 211189, China

Introduction The thermal axion scenario, constrained by ΔN_{eff} , provides an important and independent bound on axion coupling. In $T < T_c$, the hadronic contribution to axion thermalization rate has long been estimated by only taking $a\pi \leftrightarrow \pi\pi$ reaction into account, while the other channels, such as $aK \leftrightarrow \pi K$, $aN \leftrightarrow \pi N$, etc., are neglected because of Boltzmann suppression.


$$\Gamma_a(T) \propto \int d\widetilde{\Gamma} |\mathcal{M}|^2 \left[\prod_i f_i(E_i) \right] \left[\prod_j 1 \pm f_j(E_j) \right]$$


This approximation ignores the dynamical enhancement due to the nonperturbative hadronic interactions in the reaction amplitudes. We reexamine this assumption, focusing on $aK \leftrightarrow \pi K$ (vs. $a\pi \leftrightarrow \pi\pi$).

> Channels

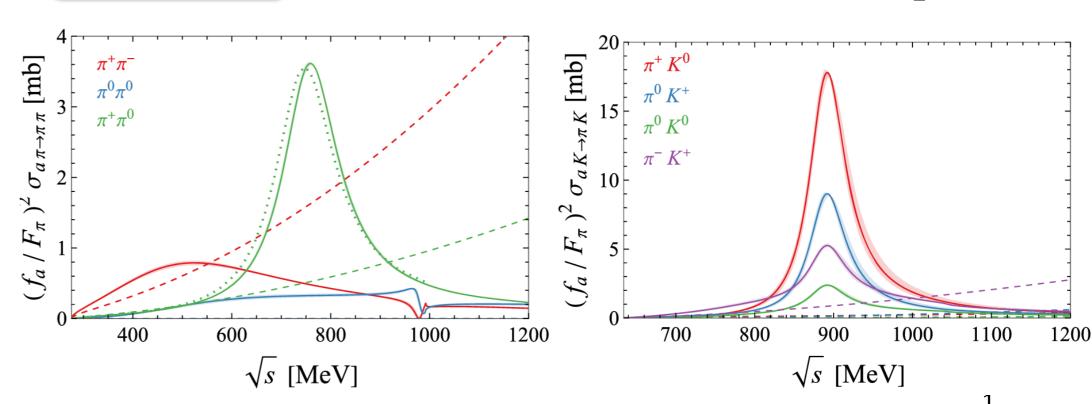
$$\begin{bmatrix} aK^{+} \to \pi^{+}K^{0}, \pi^{0}K^{+} \\ aK^{-} \to \pi^{-}\overline{K}^{0}, \pi^{0}K^{-} \\ aK^{0} \to \pi^{0}K^{0}, \pi^{-}K^{+} \\ a\overline{K}^{0} \to \pi^{0}\overline{K}^{0}, \pi^{+}K^{-} \end{bmatrix} \text{ VS. } \begin{bmatrix} a\pi^{0} \to \pi^{+}\pi^{-}, \pi^{0}\pi^{0} \\ a\pi^{\pm} \to \pi^{\pm}\pi^{0} \end{bmatrix}$$

➤ Dominant contribution

IB=isospin-breaking, IC=isospin-conserving

Framework

KSVZ axion:
$$\mathcal{L}_{axion} = \frac{1}{2} (\partial_{\mu} a)^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G \tilde{G}$$


Equivalent representation by $q = (u, d, s)^T \to \exp\left(i\frac{a}{2f_a}Q_a\gamma_5\right)q$

 $Q_a = \frac{M^{-1}}{\langle M^{-1} \rangle}$, $M = \text{diag}(m_u, m_d, m_s), \langle \cdots \rangle$ denotes flavor trace.

 $\mathcal{L}_{\text{axion-int}} = -\frac{\delta_{\mu}a}{2f_{a}} \sum_{i=3,8} C_{i} \bar{q} \gamma^{\mu} \gamma_{5} \frac{\lambda_{i}}{2} q - i C_{S} \frac{a}{B_{0} f_{a}} \bar{q} \gamma_{5} q$ +[singlet current contribution (ignored)]

 $C_3 \simeq 0.341$, $C_8 \simeq 0.550$, $C_S \simeq 0.216 \, m_\pi^2$

> Cross sections of axion reaction processes

 \triangleright In aK^+ channels, C_3 and C_8 contributions interfere-

destructively in $IJ = \frac{1}{2}0$ sector.

 \triangleright In aK^0 channels, C_3 and C_8 contributions interfere

The $aK^+ \to \pi^+ K^0$ process exhibits a particularly large cross section — about four times greater than that of $a\pi^+ \to \pi^+\pi^0$, challenging the assumption that $a\pi \to \pi\pi$ process is the dominant hadronic axion thermalization channel below T_c .

SU(3) ChPT with axion couplings:

 $\mathcal{L}_{eff}^{(2)} = \frac{F_{\pi}^{2}}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} + \chi(a) U^{\dagger} + U \chi^{\dagger}(a) \rangle - \frac{\partial_{\mu} a}{2f_{\alpha}} \sum_{i=3,8} C_{i} J_{A,i}^{\mu}$ $U = \exp\left(\frac{i\sum_{i=1}^{8} \lambda_i \phi_i}{F_{\pi}}\right)$, ϕ_i are SU(3) octet pNGBs. $\chi(a) = 2B_0 M e^{-i\frac{a}{f_a}Q_a}.$

Unitarization recipe accounting for the hadron resonances in both $a\pi \to \pi\pi$ and $aK \to \pi K$:

> Meson-meson scattering:

$$T_{IJ}^{uni} = T_{IJ}^{(2)} \cdot \left[T_{IJ}^{(2)} - T_{IJ}^{(4,LECs)} - T_{IJ}^{(2)} \cdot \mathcal{G} \cdot T_{IJ}^{(2)} \right]^{-1} \cdot T_{IJ}^{(2)}$$

> Axion reaction:

$$\vec{M}_{IJ}^{uni} = T_{IJ}^{(2)} \cdot \left[T_{IJ}^{(2)} - T_{IJ}^{(4,\text{LECs})} - T_{IJ}^{(2)} \cdot \mathcal{G} \cdot T_{IJ}^{(2)} \right]^{-1} \cdot \vec{M}_{IJ}^{(2)}$$

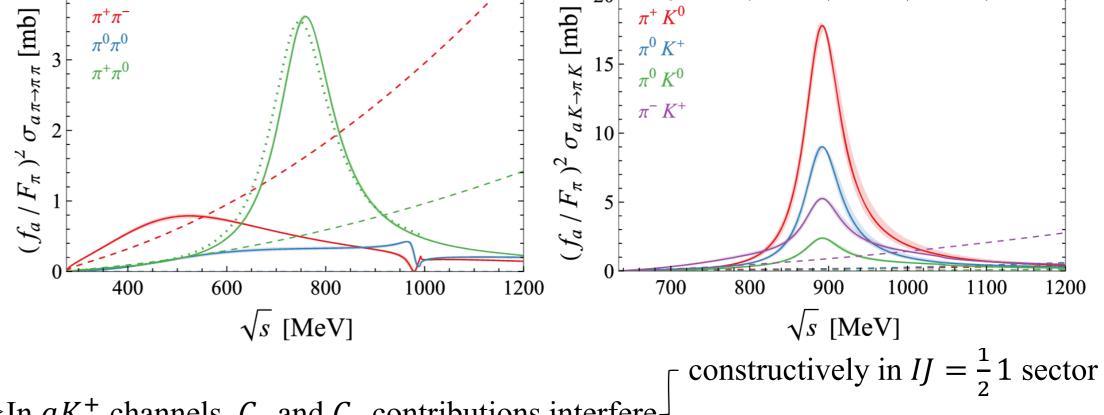
- $\mathcal{G} = \operatorname{diag}(G_1, G_2, \cdots)$ is the diagonal matrix of two-point one-loop functions (DR+ \overline{MS} with subtraction constant).
- IB effects are neglected in the meson-meson scattering.
- Additional coupled states in the coupled channel formalism:

$$a\pi^{0} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$$

$$\begin{cases}
(\pi\pi)_{IJ=00} : \leftarrow (K\overline{K})_{IJ=00} \\
(\pi\pi)_{IJ=20} : \text{ elastic } \pi\pi
\end{cases}$$

$$aK^{+} \rightarrow \pi^{+}K^{0}, \pi^{0}K^{+}$$

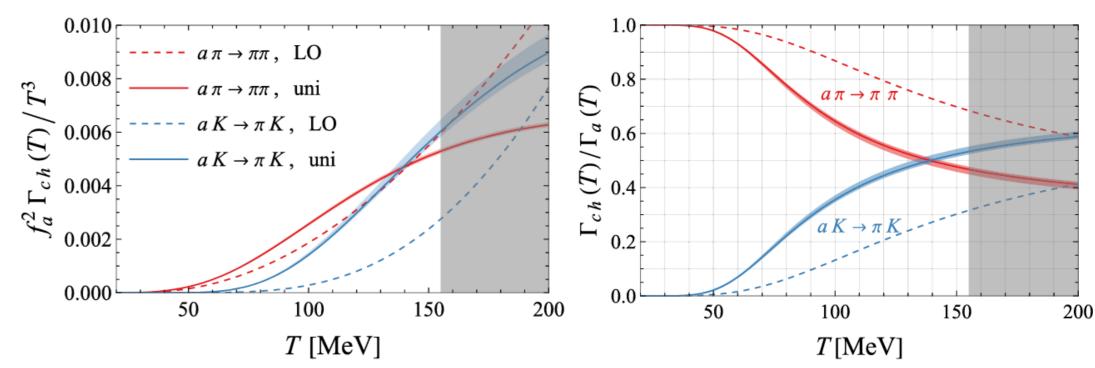
$$\begin{cases}
(\pi K)_{IJ=\frac{1}{2}0,\frac{1}{2}1} : \leftarrow (\eta K)_{IJ=\frac{1}{2}0,\frac{1}{2}1} \\
(\pi K)_{IJ=\frac{3}{2}0} : \text{ elastic } \pi K
\end{cases}$$


$$(\pi K)_{IJ=\frac{3}{2}1} : \text{ rather weak, neglected}$$

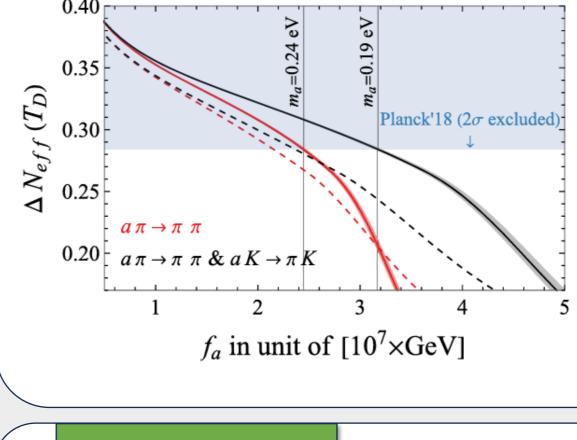
$$(\pi K)_{IJ=\frac{3}{2}1} : \text{ rather weak, neglected}$$

$$(\pi\pi)_{IJ=11} : \leftarrow (K\overline{K})_{IJ=11}$$

$$(\text{similar for } aK^{0} \text{ channels})$$

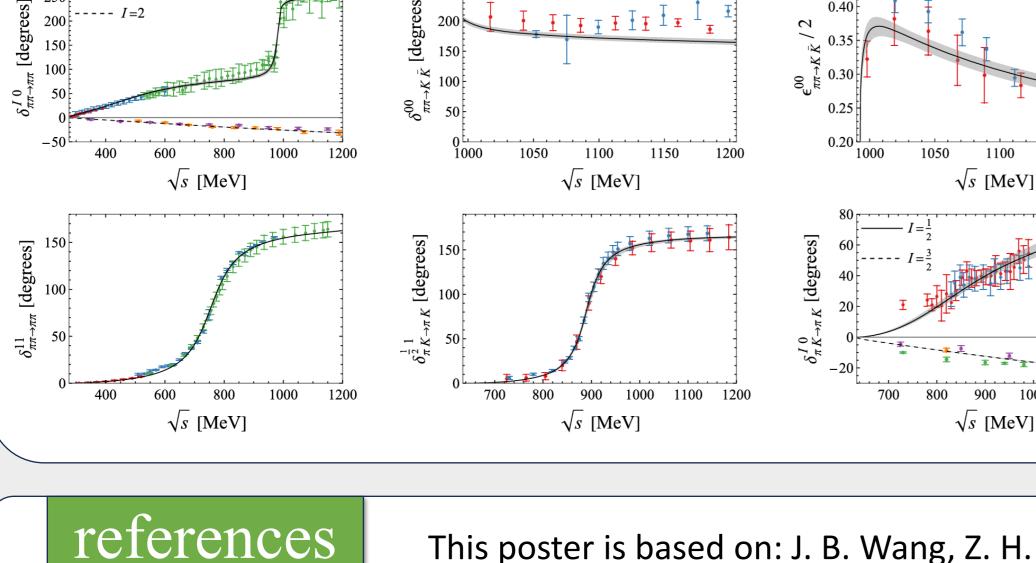

Results

constructively in $IJ = \frac{1}{2}0$ sector


destructively in $IJ = \frac{1}{2}1$ sector.

Axion thermalization rate: $aK \leftrightarrow \pi K$ vs. $a\pi \leftrightarrow \pi\pi$

The $aK \leftrightarrow \pi K$ channel begins to account for more than 40% of the total rate at temperatures above 110 MeV, and surpasses the $a\pi \leftrightarrow \pi\pi$ contribution around 130 MeV. The Kaon channels should be considered despite Boltzmann suppression!


Bounds on f_a in the KSVZ axion model

The cosmological bound on f_a in the KSVZ axion model is tightened by approximately 30% after $aK \leftrightarrow \pi K$ channel is included.

(similar for aK^0 channels)

Fix the meson-meson FSIs using the scattering data up to $\sqrt{s} = 1.2$ GeV.

Summary

- \triangleright The assumption that $a\pi \leftrightarrow \pi\pi$ dominates the hadronic axion thermalization rate below T_c , which has long been adopted in the literature, is not valid.
- \triangleright We calculated the $aK \rightarrow \pi K$ scattering amplitudes using a coupled-channel unitarization framework that incorporates the relevant resonance dynamics. \triangleright The axion thermalization rate from the $aK \leftrightarrow \pi K$ channel
- becomes comparable to, and eventually exceeds, that from the $a\pi \leftrightarrow \pi\pi$ channel for the temperatures above 110 MeV. The $aK \leftrightarrow \pi K$ channel is therefore non-negligible below the QCD crossover. Including its contribution tightens the HDM bounds on axions by up to 30%.

 \sqrt{s} [MeV]

- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977). ☐ R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977).
- ☐ S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- ☐ F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- ☐ S. Chang and K. Choi, Phys. Lett. B 316, 51 (1993).
- This poster is based on: J. B. Wang, Z. H. Guo and H. Q. Zhou, Phys. Rev. D 112, no.3, L031701 (2025), doi:10.1103/xsvj-g811.

L. Di Luzio, G. Martinelli, and G. Piazza, Phys. Rev. Lett. 126, 241801 (2021).

L. Di Luzio, J. Martin Camalich, G. Martinelli, J. A. Oller, and G. Piazza, Phys.

- Rev. D 108, 035025 (2023). ☐ J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
- ☐ J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80, 3452 (1998).