Common R&D efforts on CMOS pixel detector system for the experiment of electron-positron colliders

16th FCPPN/L Workshop, 21 – 25 July 2025, Qingdao

Yunpeng Lu

on behalf of the FCPPN/L collaboration teams

French Groups: IPHC/IN2P3, Jérôme BAUDOT, Christine Hu-Guo, ...

CPPM/IN2P3, Marlon Barbero, ...

Chinese Groups: IHEP/CAS, *Qun OUYANG, Yunpeng Lu, ...*

USTC, Lailin Xu, ...

Jilin University, Weimin Song, ...

Outline

- > Introduction
 - Overview of collaboration
- ➤ BELLE II VTX upgrade proposal
 - Backend electronics and TDAQ system
- > R&D for CEPC vertex detector
 - Large area sensor design JadePix-5
- Summary

^{*}Monolithic Active Pixel Sensor, or CMOS Pixel Sensor are used interchangeably in this talk without distinction

Overview of collaboration

- Starting from 2010, common R&D efforts of MAPS for the e⁺e⁻ collider experiments: **BES III** upgrade, ILC/CEPC, BELLE II upgrade
- 1. The prototype of CMOS pixel detector for the upgrade of BESIII-inner tracker
- ✓ Development of pixel detector ladder based on the MIMOSA28 sensors from IPHC
- ✓ common participation of beam test at DESY, to validate the ladder performance, space resolution, material budget, ...

Ref.: NIMA924(2019)287-292, NIMA986(2021)164810

2. CMOS Pixel Sensors R&D for future e⁺e⁻ colliders: *pixel sensor and double-sided ladder development* Since 2015, **four engineering runs** have been shared with TJ 180 nm CIS process

2015: JadePix-1

2017: JadePix-2/MIC4

2020: JadePix-3

2022: JadePix-4/MIC5

Development of CMOS Pixel Sensor JadePix-3

- ➤ JadePix-3 is a fully functional prototype chip with
 - Very compact in-pixel circuit, layout area 16 μm×23 μm
 - Low power consumption targeted on 50 mW/cm²
- > Designed by IHEP and collaborators in China
 - IHEP, CCNU, SDU, DLNU
- Extensive lab characterization and beam test
 - Electrical
 - Infrared Laser beam
 - Radiative source
 - High energy charged particle beam

Reference:

- Design and characterisation of the JadePix-3 CMOS pixel sensor, NIMA, 1048 (2023) 167967
- Performance study of the JadePix-3 telescope from a beam test, NIMA, 1065 (2024) 169551

Extended collaboration among Chinese groups

- Active participation in the JadePix-3 test study
 - ✓ Common development of MAPS test system, used in several chip tests
 - ✓ Characterization of reverse-biased JadePix-3 sensor, research article submitted to NIMA
 - ✓ Analysis of beam test data, co-author of NIMA paper

✓ 1 student graduated with master degree, "Performance Study of the JadePix-3 CMOS Pixel

Detector Chip" • Input Capacitance, $\mathcal{C}_{\text{input}}$ accessed by calculating analog response Amp - Smaller $\mathcal{C}_{\mathrm{input}}$ increase voltage excursion and improves the SNR C_{input} reduced nearly 65% as Bias Voltage increasing! nwell electrode $Amp = \frac{Q_{inject}}{C_{innut}} \cdot f_{gain} \cdot f_{sf}$ deep pwell $V_{
m sub}^{\perp}$ P- epitaxial layer P⁺ substrate sensing diode of JadePix-3 Bias Voltage/V 胡珈豪 (中国科学技术大学) 2025/4/19

Outline

- > Introduction
 - Overview of collaboration
- ➤ BELLE II VTX upgrade proposal
 - Backend electronics and TDAQ system
- ➤ R&D for CEPC vertex detector
 - Large area sensor design JadePix-5
- > Summary

^{*}Monolithic Active Pixel Sensor, or CMOS Pixel Sensor are used interchangeably in this talk without distinction

Physics program @ SuperKEKB with Belle II

- Thorough test of Std Model
- Direct/indirect search for New Physics
- Hadronic Physics

with billions of $B\bar{B}$, $c\bar{c}$, $\tau\bar{\tau}$ pairs In "clean" environment of B-factory

⇒ The Belle II physics book <u>PTEP 12 (2019) 123C01</u>

- Based on accumulation of 50 ab⁻¹ of e⁺+e⁻ at $\sqrt{s} = M_{Y(4S)}$
 - requires instantaneous luminosity close to 6x10³⁵ cm⁻².s⁻¹

SuperKEKB collider implementing the nano-beam scheme @ high currents

High collision rate

High beam-induced bkg

The Belle II experiment

"classical" B-factory detector + enhanced features

The vertex detector (VXD)

- Better vertexing ← lower boost
 Smarter tracking ← higher hit rate
- + Harsher radiation environment
- + Belle II trigger rate ~ 30 KHz

J. Baudot - CMOS Pixel Chip for the planned Belle 2 upgrade - Terascale detector workshop 2022

→ Proposal for replacement of VXD = PXD (DEPFET sensors) + SVD(Double Sided Strip Detector) by VTX detector.

VTX proposal

Proposed BELLE II VXT upgrade scheme

- 5 straight layers with Depleted Monolithic
 Active Pixel Sensors
- Identical chips on all layers: Optimized BELle II pIXel (OBELIX) sensor
- ~1m² silicon surface

From simulations	Belle II VIX		
Spatial res.	<10-15μm		
Total material budget Inner-outer layers	0.1 – 0.8 %Xo		
Max hit rate	120MHz/cm²		
Time precision	<100ns		
Trigger (freq.) (delay)	30 kHz 5-10μs		
Rad. hard. (TID) (fluence)	<100 kGy/year <50x10 ¹² n _{eq} cm ⁻² /year		
Power	<200mW/cm²		
300 um			

OBELIX

- Tower 180 nm process
- Extension of TJ-Monopix2
 - → OBELIX sensor
- <40 µm pitch, 100 ns integration

Key sensor specifications:

• Pixel pitch: *30-40 μm*

• Integration time: ≤100 ns

• Power dissipation: $\leq 200 \text{ mW/cm}^2$

OBELIX (Optimized for BELIe II pIXell)

- Developed from **TJ-Monopix2 sensor** (*Developed for ATLAS-ITK: doi: 10.1016/j.nima.2020.164460*)
- ☐ Increase active area from 17x17 mm² to 15x29,6 mm²
- ☐ LDO implementation on lateral sides for **power drop compensation** on ladder
- Re-design digital periphery for handling **VTX trigger requirements** with additional features: TTT (Track Trigger Transmission) & PTD (Peripheral Time to Digital)
- Additional analog functionalities for improved monitoring and safety: Monitoring ADC, Temperature sensor, Power On Reset
- **Design collaboration:** IPHC, CPPM, HEPHY, KEK, INFN, University of Bergamo, University of Pavia, University of Pisa, University of Applied Sciences and Arts Dormund, University of Bonn, University of Valencia
 - ✓ With their expertise in MAPS, Chinese laboratories are **candidate** for Belle II VTX contributing in different development aspects, such as chip characterization or system design. ← Width = 30168 μm → Width = 30168 μm

8812µm

Belle II VTX Organisation

VTX Readout Concept

WG5: System Integration

Readout electronics

- Data readout
- Chips configuration
- Fast optical links
- Interfaces to Belle II
 - DAQ
 - Trigger Timing Distribution (TTD)
 - · Run / slow control
- Track trigger
 - Transmit TTT data to Belle II trigger system

Powering, GND

- Power supplies for LV and HV, power cables
- Grounding and shielding scheme

Monitoring

- Temperatures, voltages, currents, humidity, air and water flow, water leak, radiation, etc.
- Hard-, firm- and software

Cooling services

- Chiller(s) and control unit for water cooling
- Cold and dry air / N₂ supply
- Piping (water and air)
- Water leak detection

Run / slow control

- Entire software for control, monitoring, data acquisition and data quality monitoring
- Server infrastructure for VTX operation

WG5 interest overview

- Dedicated WG5 meeting in May 2025
- 9 institutes interested to contribute to WG5
- USTC, Jilin University and IHEP presented activities and interests

			Interface board		Back-end electronics					
Group	Country	City	optical tranceivers for hit data readout	optical tranceivers for trigger data readout	hit data readout (DAQ)	trigger data readout (TDAQ)	Online su	Power supplies & grounding	Monitoring	Cooling services
HEPHY	Austria	Vienna	x		partially	partially	probably		partially	
СРРМ	France	Marseille	×		as as one one one one one one					
USTC	China	Hefei	×	×	?	х		x	x	
IHEP	China	Beijing		×		х				
Jilin University	China	Changchun					×			
IFIC	Spain	Valencia			x		x			
IFCA	Spain	Santander							X	×
IGFAE	Spain	Santiago	X		x					
ITA	Spain	Zaragoza						×		

Outline

- > Introduction
 - Overview of collaboration
- ➤ BELLE II VTX upgrade proposal
 - Backend electronics and TDAQ system
- > R&D for CEPC vertex detector
 - Large area sensor design JadePix-5
- > Summary

^{*}Monolithic Active Pixel Sensor, or CMOS Pixel Sensor are used interchangeably in this talk without distinction

Physics requirements on the CEPC vertex detector

- Br (H -> cc) is extremely sensitive to the vertex design
- Br (H -> bb) is not really sensitive to the vertex design

Ref: ZG Wu, Optimization on silicon detectors at CEPC, CEPC workshop 2019

Ref.: ZG Wu et al., Study of vertex optimization at the CEPC, 2018 JINST 13 T09002

R&D for CEPC Vertex detector

HR-CMOS pixel sensor

- TowerJazz CIS 180 nm process
- *Quadruple* well process
- Thick (~20 μm) epitaxial layer with high resistivity $(\geq 1 \ k\Omega \bullet cm)$
- Thinning to 50 µm proved

SOI-CMOS pixel sensor

- LAPIS 200 nm process
- *High resistive substrate* ($\geq 1 \ k\Omega \cdot cm$)
- Double-SOI / PDD-SOI layers available
- Thinning and backside process
- 3D connection technology available

Towards Baseline Requirements: CMOS and SOI R&D in Synergy

	Pixel size	Readout Scheme
JadePix-3	16 X 23.1 μm²	Rolling shutter
CPV-4	17 X 21 μm²	AERD
JadePix-4	20 X 29 μm²	AERD
TaichuPix-3	25 X 25 μm²	Column drain

2020-2025 CPV4-3D

R&D for CEPC Vertex detector

JadePix-5

- The largest design of JadePix series
 - Pixel array 896 rows \times 480 col.
 - Sensitive area 17.9 mm \times 14.4 mm (86%)
- Functional blocks verified in JadePix-3/4
 - Sensing diode
 - Analog frontend
 - Pixel logic
 - AERD and DAC
- Optimizations on power distribution and signal driving
 - Voltage drop across the matrix
 - Signal transition on long metal lines
- Optimizations on peripheral readout
 - SRAM size and clock frequency

Shared submission and Technology discussion

- ➤ Shared submission to Tower 180 nm process (Engineering Run)
 - 3/8 mask area for IHEP team (2 cm x 1.5 cm)
 - **JadePix-5 design** for CEPC R&D
 - Submitted in Apr. 2025
 - Paperwork for export license still ongoing with IPHC as coordinator
- ➤ Discussion sessions have been launched on demand and Visit in person during workshops
 - Pixel 2024 workshop, Strasbourg, 18-22 Nov. 2024
 - VTX workshop, Pisa, 15-17 December (to be announced)

Summary

- ➤ Common R&D efforts of monolithic CMOS Pixel Sensor for the e⁺e⁻ collider experiments since 2010
 - BES III upgrade, ILC/CEPC, BELLE II upgrade
- > 2 French groups and 3 Chinese groups involved in the BELLE II VTX upgrade
 - Chinese groups participated WG5 workshop and expressed interest on various tasks
- Large area MAPS chip JadePix-5 submitted to a shared engineering run coordinated by IPHC
 - JadePix-5 is one of two major chips on the same mask

Thank you for your time!