

And now ATLAS has recorded 94 fb⁻¹ of pp Run 3 data!

Run 475474 Lumi Block

• Currently running at a L1A rate of ~95 kHz at $\mathcal{L} = 2.1e34 \text{ cm}^{-2}\text{s}^{-1}$ at a peak $\langle \mu \rangle = 63$

ATLAS Preliminary

NNI O+NNI I (pp)

eμ + b-tagged jets

▲ 11 + b-tagged jets

▼ 1 + jets

in 2022/2025 ATLAS has >200 fb⁻¹ of pp Run 3 data!

22-Jul-25

Among the recent ATLAS results

In 2024/2025 ATLAS continued Run 2/3 analysis!

E. Monni

Significance: 3.4σ (2.5σ exp), $\mu = 1.4 \pm 0.4$

Reminder: CMS (Run 2): $\mu = 1.19 \pm 0.43$ (3.0 σ) [arXiv:2009.04363]

Significance: 2.5σ (1.9 σ exp), $\mu = 1.3^{+0.6}_{-0.5}$

Reminder: ATLAS & CMS (Run 2): $\mu = 2.2 \pm 0.7$ (3.4 σ) [arXiv:2309.03501]

22-Jul-25

Among the recent ATLAS results

In 2024/2025 ATLAS continued Run 2/3 analysis!

Reminder: CMS (Run 2): $\mu = 1.19 \pm 0.43$ (3.0 σ) [arXiv:2009.04363]

Reminder: ATLAS & CMS (Run 2): $\mu = 2.2 \pm 0.7$ (3.4 σ) [arXiv:2309.03501]

E. Monni

Among the recent ATLAS results

In 2024/2025 ATLAS continued Run 2/3 analysis!

ATLAS Phase-I upgrades + Commissioning completed in 2024

ATLAS Phase-I upgrades + Commissioning completed in 2024

in 2024 ATLAS took 118 fb⁻¹ of pp Run 3 data!

LHC and ATLAS luminosity above target — and smashed records in 2024

125 fb⁻¹ pp delivered, 118 fb⁻¹ recorded, 110 fb⁻¹ good for physics (94.3% data taking efficiency, 93.8% DQ efficiency)

Record pp luminosity, double previous peak year: 63.3 fb⁻¹ (2018) Total del. (rec.) lumi in Run 3: 195 (184) fb⁻¹, Run 2: 156 (147) fb⁻¹

Excellent PbPb year: 1.82 nb $^{-1}$ (2024), 1.87 (2023), 1.80 (2018) Record per-day luminosity: 235 μ b $^{-1}$ (2024), 134 (2023), 152 (2018)

LHC / HL-LHC Plan

The Phase II upgrade program

The Phase II upgrade program

Plan ahead

ATLAS planning

LHC planning

- Stable beams at 13.6 TeV with 2460 bunches
- Luminosity limited to ~2.2 x 10³⁴ cm⁻² s⁻¹ due to cryo limit on inner triplet
- Machine development (MD1): June 19 22
- Technical stop (TS1): June 23 27
- Light-ions pO, OO, NeNe: June 29 July 8
- Luminosity program: July 10 14
- pp runs: July 18 Aug 31
- Several small issues with injectors and LHC delayed luminosity program somewhat
- Official schedule underestimates time needed for luminosity program and revalidation/ramp-up

| Collisions with | Start Beam | Commissioning | First Stable | Deams | May | Collisions with | Start Beam | Commissioning | Deams | May | Collisions with | Start Beam | Commissioning | Collisions with | Start Beam | Collisions with | Start Beam | Collisions with | Coll

LHC 2025 schedule v1.1

• Goal: pp 120 fb⁻¹ delivered in 2025

Plan ahead

ATLAS planning

LHC planning

- Stable beams at 13.6 TeV with 2460 bunches
- Luminosity limited to ~2.2 x 10³⁴ cm⁻² s⁻¹ due to cryo limit on inner triplet
- Machine development (MD1): June 19 22
- Technical stop (TS1): June 23 27
- Light-ions pO, OO, NeNe: June 29 July 8
- Luminosity program: July 10 14
- pp runs: July 18 Aug 31
- Several small issues with injectors and LHC delayed luminosity program somewhat
- Official schedule underestimates time needed for luminosity program and revalidation/ramp-up

• Goal: pp 120 fb⁻¹ delivered in 2025

Plan ahead

ATLAS planning

LHC planning

- Stable beams at 13.6 TeV with 2460 bunches
- Luminosity limited to ~2.2 x 10³⁴ cm⁻² s⁻¹ due to cryo limit on inner triplet
- Machine development (MD1): June 19 22
- Technical stop (TS1): June 23 27
- Light-ions pO, OO, NeNe: June 29 July 8
- Luminosity program: July 10 14
- pp runs: July 18 Aug 31
- Several small issues with injectors and LHC delayed luminosity program somewhat
- Official schedule underestimates time needed for luminosity program and revalidation/ramp-up

| Collisions with | Start Beam | Start Beam

LHC 2025 schedule v1.1

Goal: pp 120 fb⁻¹ delivered in 2025

Plan ahead

ATLAS planning

LHC planning

LHC 2025 schedule v1.1

- Stable beams at 13.6 TeV with 2460 bunches
- Luminosity limited to ~2.2 x 10³⁴ cm⁻² s⁻¹
 due to cryo limit on inner triplet

	LHC, TI2. TI8 operiments d xall valves	closed Start B		tart Beam ommissioning		First Stable beams May			Collisions with 1200 bunches Jun						
	Wk	1	14	15	16	17	18	19	20	21	22	23	24	25	26
	Мо		31	1 7	14	Easter 2		28 Cryo reconf.	12	¥ 19	26	2	Whitsun 9	16	23
	Tu		Machine					Scrubbing							
[We	Ψ _{Ma}			Re-commissioni with beam	ing									TS1
	Th		TI8 test				1st May				Ascension				
_[Fr				G Fri		¥	Into	rloaved						

Machine development (MATLAS is in Run 3 at full swing!

FCPPN/L cooperation strongly contributes to many "Run 2" legacy papers as well as now to the first "Run 3" and combined R2&3 data analysis.

See today's talks as well as winter and summer conference slides and related primes July 18 - Aug 3 conf. notes for ATLAS new results.

ATLAS Upgrade Phase II is also in full swing and FCPPN/L is strongly involved!

AND:

ATLAS FCPPN/L has opportunities to further cooperate: ITK, LAr Calo, HGTD,...

BUT: also in the emerging future detector R&D DRD program for ex...

2-Jul-25 AND FCPPN/L cooperations have a role to play in it!

Future R&D program, DRDs, Allegro, Allegro calo...

Right time to take part to these huge R&D effort ramping up for next e⁺e⁻ colliders

Many activities in many field, (see talks in the detector section)

- A design in its infancy
- Si vtx det., ultra light drift chamber (or straw tracker or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- · Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

40cm

- Noble Liquid EM calorimetry is a very appealing solution for FCC-ee
 - Fulfils **all requirements** of the physics programme
 - Cost-effective
 - Significant progress in simulations to prove all important metrics
- Very active ALLEGRO Ecal R&D
 - As part of DRD6 collaboration
 - Working on all challenges to reach our performance goals
 - Design to be demonstrated by a prototype within 5 years
 - There is still plenty to do!
 - We are always open to new collaborators!

ACC(IHEP/NJU/SDU/SJTU/USTC)-IN2P3(APC/CPPM/IJCLAB/LPNHE/CC)-CEA

- Strong cooperation program between the Atlas Chinese Clusters and IN2P3 labs since many years:
 - Higgs, Susy studies, SM (through γ γ, WW final states and also lepton/jet/bjet/top final states such as in 4t, ttH, VH, H⁺⁺, HH, SH...)
 (G. Bernardi, N.K.Vu talks)
 - Performance studies (E/gamma, b tag, trigger, calorimeter)
 - Commissioning & operation for Run3 (Several FCPPN/L PhD students)
 - Silicon detector R&D and Phase II and future R&D (M. Li, D. Xu,...)
 - Numerous presentation in Atlas meetings, conferences as well as in internal, public/conf notes and publications. (See FCPPN/L reports)
 - Senior physicists visits (France and China) slowly restarted and cooperation work between physicists continue.
 - Several co-PhD thesis defended in 2023&24, Q. Shen, X. Wang, Y. Zhang, and more to come... (Co-PhDs important strengthening force for the FCPPN/L)
- On computing, IHEP/IN2P3/CEA (C. Gang,...)
- Phase II (HGTD, ITK, LAr...) & new accel. coop. started (M. Ruan, Y. Tan, T. Pasquier,...) + Ramp up on theory cooperation for future accelerator.

ATLAS ACC-IN2P3 continued full Run2 data analyses & performance studies to complete "legacy" full Run2 publications + full swing on Run3 analysis

- PhD: X. Yang (LPSC/SDU) CSC funded (defended 06/20)
 - Y. Wang (LPNHE/USTC) USTC funded (defended 12/20)
 - H. Atmani (IJCLAB) IJCLAB funded (defended 12/20)
 - H. Xu (CPPM/USTC) CPPM/USTC funded (defended 09/21)
 - Z. Li (CPPM/SDU) CPPM/SDU/CSC funded (defended 09/21)
 - K. Han (IJCLAB/USTC) USTC funded (defended 03/22)
 - C. Wang (CPPM/SJTU) CPPM/SJTU/CSC funded (defended 02/23)
 - J. Tafoya (IJCLAB) IJCLAB funded (defended 10/23)
 - Y. Zhang (APC/SJTU) APC/SJTU/CSC funded (defended 12/23)
 - Q. Shen (APC/SJTU) APC/SJTU/CSC funded (defended 11/24)
 - X. Su (IJCLAB) IJCLAB/USTC funded (started in 10/20)
 - X. Wang (CPPM/SJTU) CPPM/SJTU/CSC funded (defended 11/24)
 - C. Mo (APC/SJTU) APC/SJTU/CSC funded (started 10/23)
 - D. Yu (APC/SJTU) APC/SJTU/CSC funded (started 25)
- Many former Co-PhDs now postdocs or permanent positions: Core for future Accelerator Prog
- HL-LHC (Calo, ITK, HGTD...) & future accelerator (Silicon detector, Calo...) cooperation program ongoing, but need new PhD students & short stay scientists to strengthen it!
- Need to strengthen person power/funds for strong ATLAS Run 2/Run 3 analysis, ATLAS upgrade and future detectors R&D to foster the future accelerator program.

