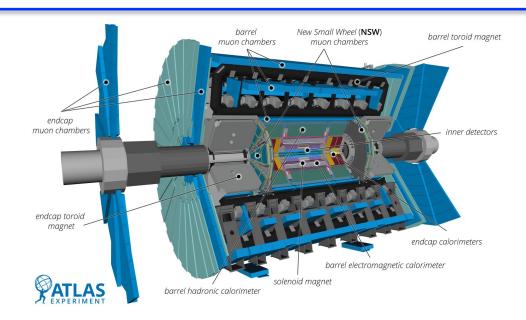
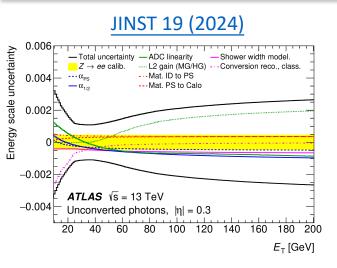
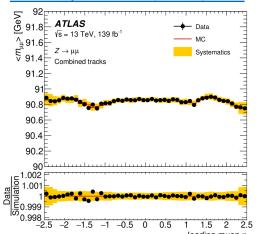

Highlight on recent ATLAS results


Jun Guo Shanghai Jiao Tong University

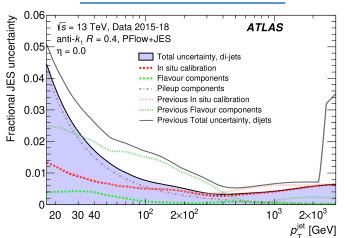
On behalf of the ATLAS Collaboration

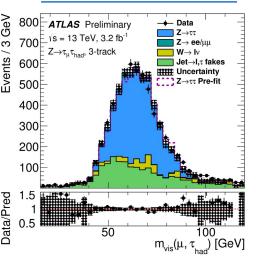
FCPPN2025, Qingdao, China, 7/21-7/25/2025


ATLAS data



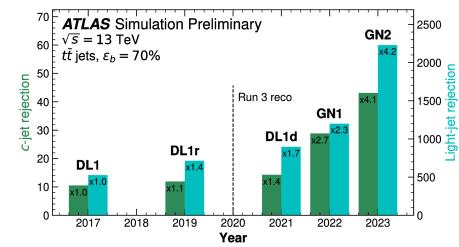
- Smooth LHC and ATLAS running recorded ~207 fb⁻¹ in Run3
- ATLAS has already published > 1400 papers
- Great amounts of work have been dedicated to reconstruction, calibration and performance study
- Physics analyses are carried out from different perspectives: new channels, new theoretical motivation, ...
- Run3 data has already been analyzed!


Excellent calibration & performance

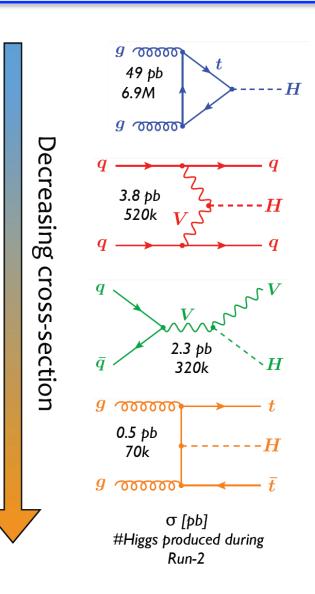


2407.15627 Subm. EPJC

ATLAS-CONF-2017-029

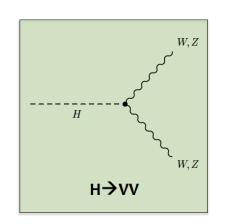


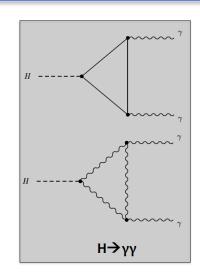
- > The excellent performance requires excellent calibrations:
 - \triangleright γ : energy calibration **0.2**% at 60 GeV, e energy calibration **0.05**% at 45 GeV
 - \triangleright μ : energy scale calibration at **0.1-0.05**%
 - \triangleright Jet: energy calibration scale at (better than) 1% level for p_T above 60 GeV
 - $\succ \tau$: energy scale calibrated at ~2%(3%)


Jet flavor tag:

- Traditional approach (DL1r): track-based low-level quantities followed by high-level multivariate classifier
- New approach (GN2): direct process trk and jet info, additionally reconstructing jet internal structure

arXiv:2505.19689 Sub. to Nature Communications


Higgs Physics

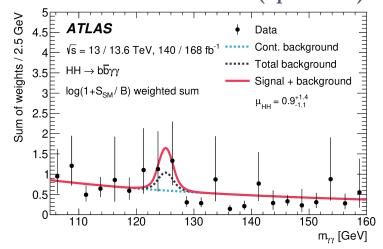


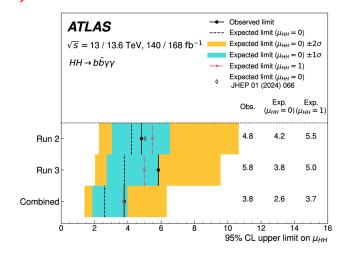
gluon fusion ggH: 86%

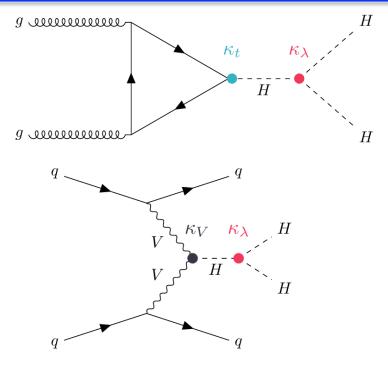
vector boson fusion (VBF): 6.5%

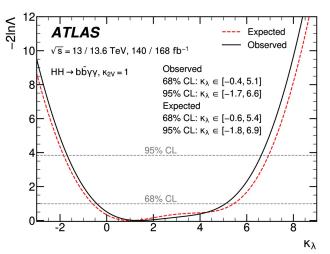
W,Z associated production WH/ZH: 4%

tīH associated production: 1%

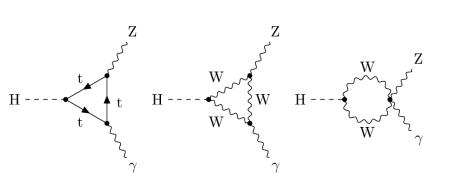

- LHC is a Higgs factory
- ~8 million Higgs bosons produced by LHC during Run-2 per experiment
- Over a decade of measurements including all productions & decay
 Higgs boson precision probe!
- The **LHC Run2** and **Run3** data used to fully characterize the Higgs boson
 - Run2: 140 fb⁻¹; Run3: 60fb⁻¹(2022-2023), 100fb⁻¹(2024)

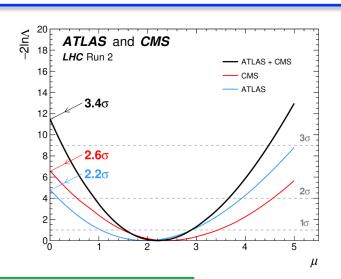


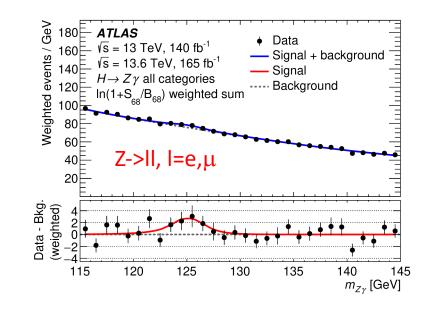



- Probe Higgs potential: self-coupling, ...
- Significance improvements compared to Run2 result:
 - 20% from new b-tagging based on transformer neural network (GN2)
 - 5% from kinematic fit
 - 50% from additional data
 - 10% from category optimization
- Observed $\mu_{HH} = 0.9^{+1.3}_{-1.0}$ (stat.) $^{+0.6}_{-0.5}$ (syst.);
- Significance: $0.8\sigma(obs)/1.0\sigma(exp)$
- $-1.7 < \kappa_{\lambda} < 6.6 \ (-1.8 < \kappa_{\lambda} < 6.9 \ \text{expected}) \ @95\% \ \text{C.L.}$

Run 2+Run 3(up to 2024): 140 fb⁻¹, 168 fb⁻¹



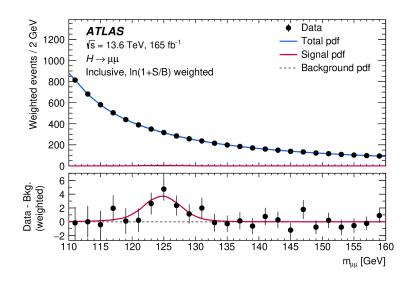


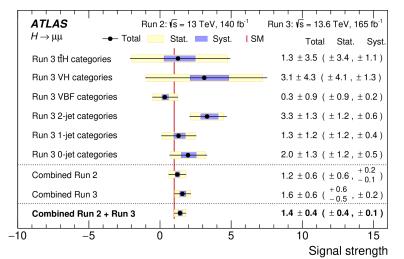


Run 2+Run 3(up to 2024): 140 fb⁻¹, 165 fb⁻¹

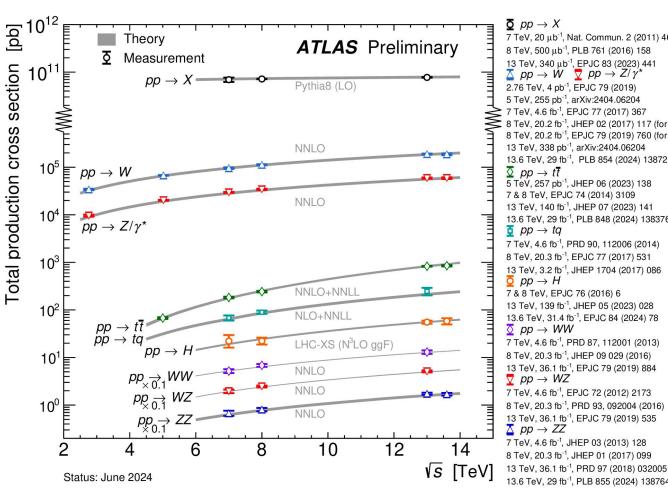
- BR(H-> $Z\gamma$)/BR(H-> $\gamma\gamma$) is sensitive to new physics, via contributions in the loops
- Would complete the suite of H decay into gauge boson pairs ($\gamma\gamma$, ZZ*, WW*)
- What is new in Run 3 in addition to higher E, xsect and more data:
 - Relaxed pT cut for muon and photon
 - 13 mutually exclusive categories (first time with multi-l's)
 - MVA (XGBoost), replacing previous cut-based selection

Run3: $\mu = 0.9^{+0.7}_{-0.6}$, significance: $1.4\sigma(\text{obs})/1.5\sigma(\text{exp})$ Run2+Run3: $\mu = 1.3^{+0.6}_{-0.5}$, significance: $2.5\sigma(\text{obs})/1.9\sigma(\text{exp})$


Sensitivity improved by 61% relative to Run2, 20% relative to ATLAS+CMS Run2 combination



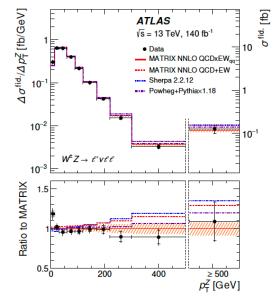
- Opportunity to first observe H coupling to a secondgeneration fermion
 - Target ggF, VBF, VH, ttH production modes
- What is new in Run 3, apart from doubled statistics:
 - 5 billion NLO Drell-Yan MC sample
 - Improved mass resolution by H-> $\mu\mu$ decay vertex fit
 - Inclusion of 2-lepton VH category, use of fully hadronic ttH decay, ...
- 23 categories based on topological and kinematic info
- Run3: $\mu = 1.6 \pm 0.6$, significance: $2.8\sigma(\text{obs})/1.8\sigma(\text{exp})$
- Run2+Run3: $\mu = 1.4\pm0.4$, significance: $3.4\sigma(\text{obs})/2.5\sigma(\text{exp})$

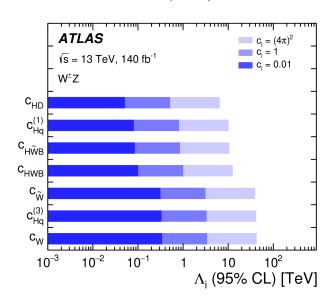

Evidence of Yukawa coupling to 2nd-generation is seen!

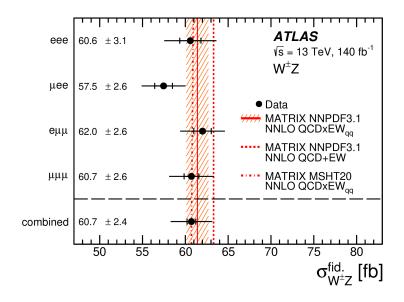
Run 2+Run 3(up to 2024), 140 fb⁻¹, 165 fb⁻¹

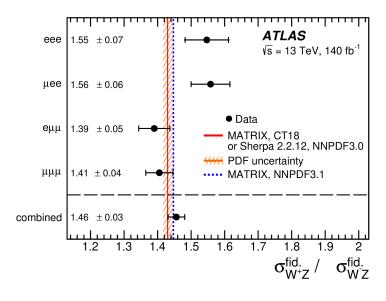
Standard Model

- 7 TeV, 20 μb⁻¹, Nat. Commun. 2 (2011) 463 8 TeV, 500 μb⁻¹, PLB 761 (2016) 158 13 TeV, 340 μb⁻¹, EPJC 83 (2023) 441 \triangle pp \rightarrow W ∇ pp \rightarrow Z/ γ^* 2.76 TeV, 4 pb⁻¹, EPJC 79 (2019) 5 TeV, 255 pb⁻¹, arXiv:2404.06204 8 TeV, 20.2 fb⁻¹, EPJC 79 (2019) 760 (for W) 13 TeV, 338 pb⁻¹, arXiv:2404.06204 13.6 TeV, 29 fb⁻¹, PLB 854 (2024) 138725 $\nabla pp \rightarrow t\overline{t}$ 5 TeV, 257 pb⁻¹, JHEP 06 (2023) 138 7 & 8 TeV, EPJC 74 (2014) 3109 13 TeV, 140 fb⁻¹, JHEP 07 (2023) 141 13.6 TeV, 29 fb⁻¹, PLB 848 (2024) 138376 $\mathbf{p} p \to tq$ 7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, EPJC 77 (2017) 531 13 TeV, 3.2 fb⁻¹, JHEP 1704 (2017) 086 \bigcirc pp \rightarrow H 7 & 8 TeV, EPJC 76 (2016) 6 13 TeV, 139 fb⁻¹, JHEP 05 (2023) 028 13.6 TeV, 31.4 fb⁻¹, EPJC 84 (2024) 78 \bigcirc pp \rightarrow WW 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, JHEP 09 029 (2016) 13 TeV, 36.1 fb⁻¹, EPJC 79 (2019) 884 $\nabla pp \rightarrow WZ$ 7 TeV, 4.6 fb⁻¹, EPJC 72 (2012) 2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 36.1 fb⁻¹, EPJC 79 (2019) 535 \triangle pp \rightarrow ZZ 7 TeV, 4.6 fb⁻¹, JHEP 03 (2013) 128 8 TeV, 20.3 fb⁻¹, JHEP 01 (2017) 099 13 TeV, 36.1 fb⁻¹, PRD 97 (2018) 032005
- Rich program at the LHC covers many aspects of the Standard Model
 - Non-perturbative & Perturbative QCD
 - Tests/extraction of strong coupling constant and proton structure
 - Precision measurements of SM parameters (m_W, m_Z , $\sin^2 theta_W$, m_{top})
 - Measurements of rare processes and differential cross sections at high energies to probe vector boson and top couplings

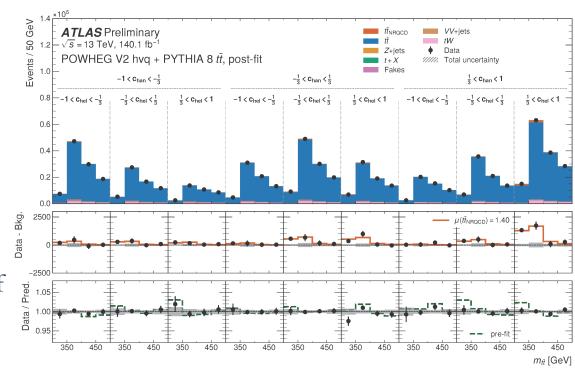

• Precision measurements of the SM parameters offer indirect searches for new physics

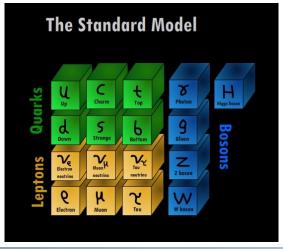

arxiv:2507.03500, submitted to JHEP

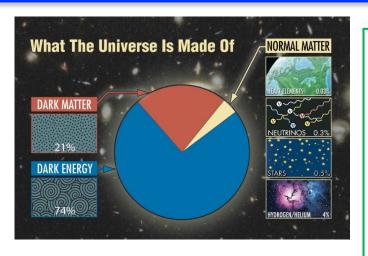

- Sensitive to gauge boson self-interaction, related to non-Abelian structure of EW interaction
 - Directly probe TGC, in particular WWZ gauge coupling
 - Explore additional sources of CP violation
 - Constrain anomalous interactions
- 15 observables are compared with state-of-the-art predictions
- Measured inclusive cross-section in the fiducial region:

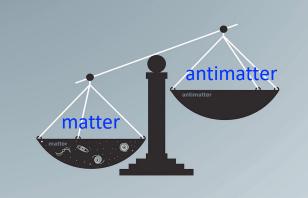

$$\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 60.7 \pm 0.5 \, (\text{stat.}) \pm 1.4 \, (\text{exp. syst.}) \pm 1.8 \, (\text{mod. syst.}) \pm 0.6 \, (\text{lumi.}) \, \text{fb}$$

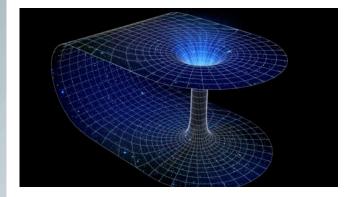
• Consistent with NNLO QCD \times EW MATRIX prediction: 61.3 \pm 1.3 (scale) fb

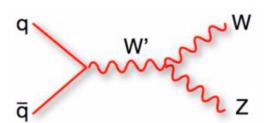


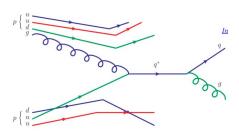

ttbar near threshold

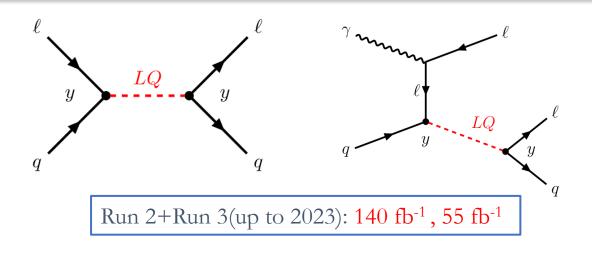

- In low kinematic regime, ttbar are largely in colour-singlet and maximally entangled.
- Formation of colour-singlet, *S*-wave, quasi-bound-states with masses just below the production threshold
 - Local enhancement with width well below experimental resolution
 - Stringently probe QCD in non-relativistic regime (NRQCD)
- Rely one m_{tt} and two angular variables, sensitive to spincorrelations:
 - 9 SRs based on c_{hel} and c_{han}
- Combine pQCD tt MC and NRQCD, with the normalization of NRQCD as a free floating parameter in fits
- X-section(tt_{NRQCD})= 9.0 ± 1.3 pb, significance: $7.7\sigma(obs)/5.7\sigma(exp) \rightarrow NRQCD$ is observed!

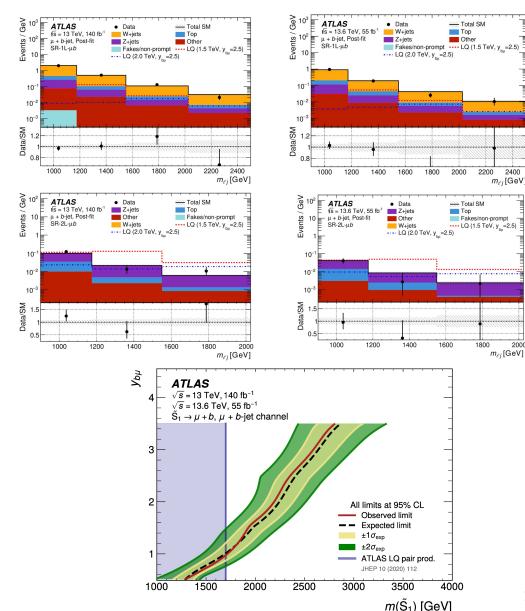



Next: Further characterization of the excess and quantify off-shell top decays, resummation, ...


BSM searches

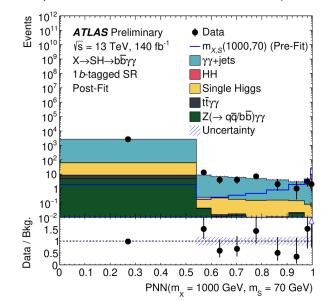


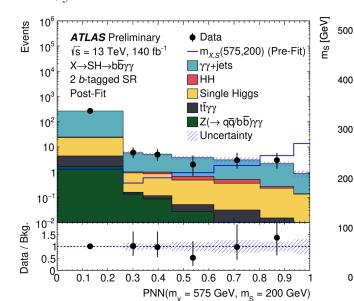


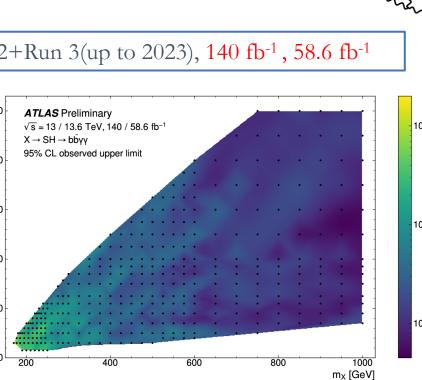

- Tremendous success has been achieved by the SM. There are, however, too many free parameters. And some fundamental questions remain unanswered.
 - Why 3 generations of quarks & leptons
 - Hierarchy problem
 - Dark matter/energy
 - ...
- Many extensions to the SM aim to solve these problems, which generally predict new phenomena: new resonance, non-resonance, ...
 - HVT, Compositeness, Extra dimensions, SUSY, ...
 - Z', W', Leptoquarks, long-lived particle, ...

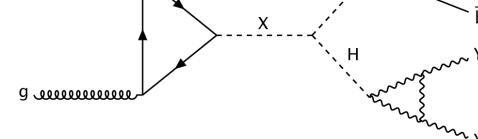
Leptoquarks (LQ)

arxiv:2507.03650, submitted to JHEP

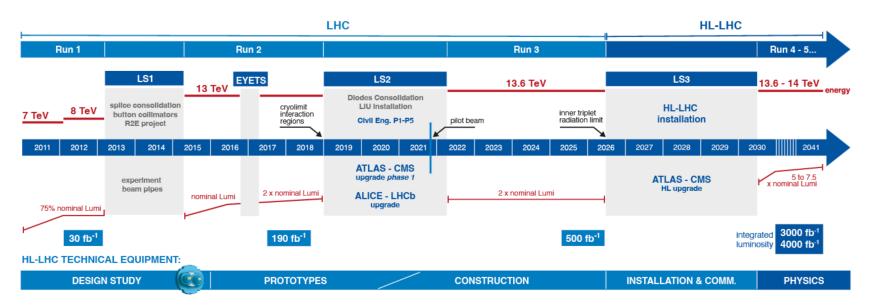



- First LHC search for resonance LQ coupling to e's & μ's
 - Exploit the lepton content of the proton
 - State-of-the-art NLO of lepton parton PDFs
- Four orthogonal channels—e + light-jet, μ + light-jet, e + b-jet, and μ + b-jet: each has 1L and 2L regions
- Constraints on scalar LQ improve at large coupling:
 - e+light-jet: 0.25
 - μ +light-jet: 0.7
 - Other channels: >1





- Probe extended Higgs sector: small mixing between H and additional scalar bosons
- Main changes compared to Run 2 result: JHEP 11 (2024) 047
 - Improved reconstruction, identification and calibration
 - Retrain discriminating variables and improved SR definition
- Sensitivity improved by 15-73%: more effective in low-mass region
 - Run3 data contributes 9-30%
- Joint Ph.D between Marseille U.-CPPM and SJTU through CSC: Xi Wang
 - A main analyzer on Run2 SH paper
 - Co-supervisors: Emmanuel Monnier; Elisabeth Petit; Jun Guo

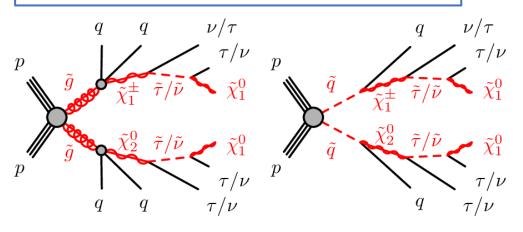


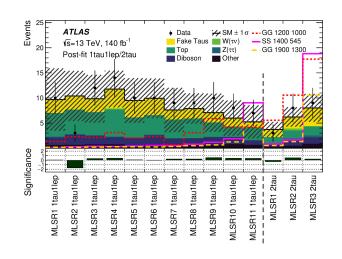
Run 2+Run 3(up to 2023), 140 fb⁻¹, 58.6 fb⁻¹

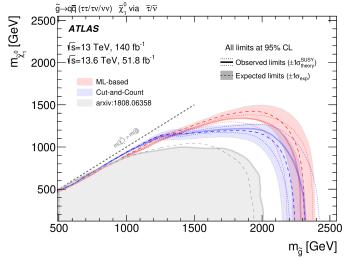
g uninimities.

Summary & Next

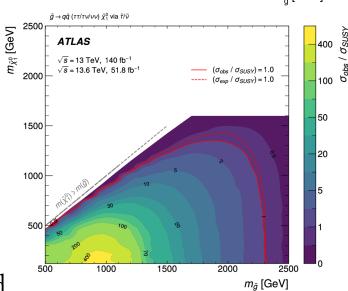
- Relentless efforts have been made by ATLAS to explore the potential of LHC in advancing our knowledge about nature, productive with excellent results covering different aspects
 - High precision achieving in measuring Higgs, EW, Top, ...
 - New scenarios and higher mass are probed in BSM search
- Phase II upgrade is undergoing to make the detector keep up with the upcoming HL-LHC running
 - 200 interactions/bunch crossing to reach 3 ab⁻¹
- More data (Run3, HL-LHC) and new analyzing techniques will shed more light on the way forward

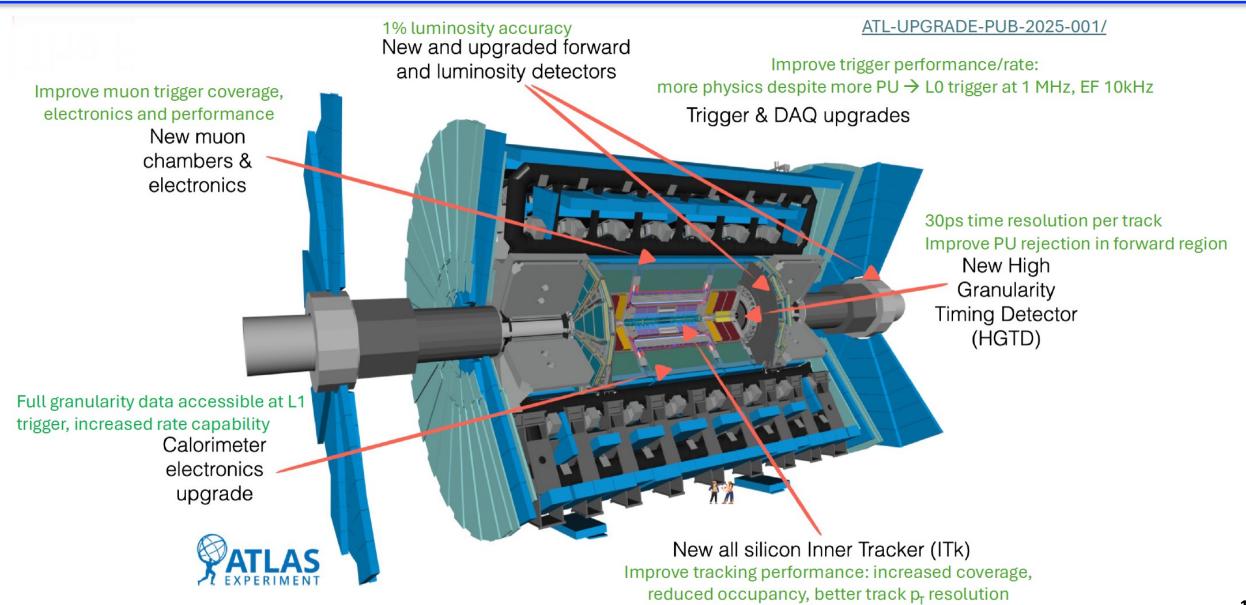



Backup


arxiv:2507.00296, submitted to EPJC

SUSY tau+X


Run 2+Run 3(up to 2023), 140 fb⁻¹, 51.8 fb⁻¹



- A natural solution to the hierarchy problem
- Target pair-production of gluino and squark, in 3 channels depending on number of hadronic τ's: 1TAU0LEP; 1TAU1LEP; 2TAU
- Two strategies: cut-and-count; machine learning
- Improvements: enhanced calibration and identification algorithms, data sample, ML
- Gluino masses below 2.25 TeV and squark masses up to 1.7 TeV are excluded.

Phase II upgrade

