Charmonium production in

FCPPN/L 2025, Qingdao, 21-25/7/2025

Vladik Balagura, Yanting Fan, Feng-Kun Guo, Jibo He, Raoul Henderson, Jean-Philippe Lansberg, Zhijun Liu, Hua-Sheng Shao, Qi Shi, Yuxuan Tang, Zhenhong Wu, Vsevolod Yeroshenko, Yixiong Zhou, Valeriia Zhovkovska, SB

Contacts: Jibo He and Sergey Barsuk

Charmonium: bound state of charm quark and anti-charm quark

Charmonium: bound state of charm quark and anti-charm quark

Charmonia and their decays

- ☐ Hadronic final states allow to study different charmonium states simultaneously
- \Box Below DD threshold: strong annihilation to two or three gluons, α_S^4 or α_S^6 dependence
- \square Above \overline{DD} threshold: decays to \overline{DD} via single gluon radiation, α_S^2 dependence

Charmonium for Chinese students

Quarkonium production

☐ Two scales of production:

hard process of $Q\overline{Q}$ formation and hadronization of $Q\overline{Q}$ at softer scales

$$\Box$$
 Factorization: $d\sigma_{A+B o H+X} = \sum_n d\sigma_{A+B o Q \overline{Q}(n)+X} imes \left\langle \mathcal{O}^H(n) \right
angle$

Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair

Long distance matrix elements (LDME), non-perturbative part

- ☐ Hadronization description
- ☐ Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters
- □ Colour-singlet model: intermediate QQ state is colourless and has the same J^{PC} quantum numbers as the final-state quarkonium
- \square NRQCD: all viable colours and J^{PC} allowed for the intermediate Q $\overline{\mathbb{Q}}$ state, they are adjusted in the long-distance part with a given probability. Long-Distance Matrix Elements (LDME) from experimental data. *Most used since is based on an EFT and can be improved systematically*
- □ Universality: same LDME for prompt production and production in b-decays; for e+e-, ep, pp, ...; all beam energies; ...
- ☐ Heavy-Quark **Spin-Symmetry** (HQSS): **links between** colour-singlet (CS) and colour-octet (CO) **LDME of different quarkonium states**

Charmonium production: challenges

- Many puzzles are still there
- Simultaneous description
 of J/ψ production and
 polarization "polarization
 puzzle"
- Simultaneous description of η_c and J/ψ together with J/ψ photoproduction "HQSS puzzle"
- Negative contribution in the cross-section
- Tension with J/ψ+Zproduction
- CEM not describing Pwaves production

	LDMEs	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
	Butenschön et al.	✓	✓	X	X
	Chao et al. $+ \eta_c$	✓	X	✓	✓
	Zhang et al.	✓	X	✓	✓
	Gong et al.	✓	X	✓	X
	Chao et al.	✓	X	✓	X
,	Bodwin et al.	✓	X	✓	×

M. Nefedov

LHC detectors studying quarkonium

- ☐ Quarkonium production: forward peaked & correlated HQ production at the LHC
- ☐ ATLAS & CMS: mid-rapidity
- ☐ LHCb: forward region, ~4% of solid angle, but ~40% of HQ production x-section

☐ Acceptance coverage, trigger threshold, hadron ID, luminosity

☐ Complementary cross-section measurements

LHCb data

□ Excellent performance of the LHC and the experiments

☐ LHCb integrated luminosity: ∫Ldt ~ 20 fb⁻¹

Vertex reconstruction in LHCb: VErtex LOcator

- Excellent spatial resolution, down to 4 μm for single tracks
- Precise **impact parameter** measurement, $\sigma_{IP} = 11.6 + 23.4/pT$ [µm]
- □ Precise **primary vertex** reconstruction, $σ_{x,y} = 13 \mu m$, $σ_z = 69 \mu m$ for vertex of 25 tracks
- ☐ Excellent **proper time** resolution
- **□ Vertex resolution** allows to resolve fast (x~27) $B_s\bar{B}_s$ oscillations

JINST 8 (2013) P08002, JINST 9 (2014) P09007

- ☐ 88 semi-circular microstrip Si sensors
- Double-sided, R and φ layout
- 300 μm thick n-on-n sensors, strip pitches from 40 to 120 μm
- ☐ First active strip at 8 mm from beam axis

Charged hadron ID in LHCb: Cherenkov light detectors

LHCb Upgrade I

- ☐ LHCb upgrade I for runs 3 and 4
- ☐ VELO new design with pixels
- ☐ Upstream tracker with silicon strips, main tracker with scintillating fibers
- □ **RICH** photodetectors MAPMTs
- New dedicated luminometer
- ☐ SMOG2 gas target integrated in VELO
- ☐ All subdetectors readout at 40 MHz for a **fully software trigger using GPUs**
- ☐ Can run at 5 x higher luminosity

- □ 30 MHz of inelastic collisions will be reduced to ~1 MHz by the HLT1 (tracking/vertexing and muon ID) running on GPUs
- ☐ Highest throughput of any HEP experiment
- ☐ Many measurements directly profit from higher statistical precision (about x3 with run 3 only)

Charmonium production vertex

□ Hadroproduction

□ Prompt J/ψ production and production in b-hadron decays distinguished from the fit to pseudo-lifetime distribution

□ Decays of higher resonances

prompt production

PV – primary vertex

decay time

SV – secondary vertex

distinguished via pseudo-proper

 $t_Z = \frac{z_{SV} - z_{PV}}{p_Z} M_{q\bar{q}} \text{ or } \tau = \frac{L_{xy}}{p_T} M_{q\bar{q}}$

☐ Production in **b-hadron decays** / non-prompt

Historical $\eta_c(1S)$ production puzzle

- \Box $\eta_c(1S)$ LDMEs determined via known HQSS relations between $\eta_c(1S)$ and J/ ψ and J/ ψ production
 - J/ψ prediction (NRQCD CS+CO)

LHCb: EPJC 75 (2015) 311

CS prediction

Butenschoen, He, Kniehl, arXiv:1411.5287

- ☐ Results described by **CS NLO**, below expected CO contribution
- \square Progress in theory description, integrating LHCb result on η_c production in LDME calculations

$$0 < O^{\eta_c}(^3S_1^8) < 1.46 \times 10^{-3} \text{ GeV}^3$$

- ☐ Theory description still covers limited p_T range
- ☐ Further tests with measurements at different √s and of other linked observables

Historical $\eta_c(1S)$ production puzzle

 \Box η_c production at \sqrt{s} =7 and 8 TeV sets new constraint on J/ ψ polarization

- Impressive progress!
- ☐ Still:
 - □ Tension with CDF data
 - □ Two large CO contributions cancel each other ⇒ hierarchy problem ⇒ Soft Gluon Fragmentation, etc.?

$\eta_c(1S)$ production

Analysis with 13 TeV data, measurement relative to J/ψ

EPJC 80 (2020) 191

□ Pseudo proper-time to separate prompt charmonium and charmonium from b-decays

 \sqrt{s} = 13 TeV, $\int Ldt \sim 2 \text{ fb}^{-1}$

3200

3100

☐ Selection (account for cross feed)

- ... or pseudo proper-time fit
 - Good agreement between the results

2000

EPJC 84 (2024) 1274 $\sqrt{s} = 13 \text{ TeV}$, $\int Ldt \sim 2.2 \text{ fb}^{-1}$

Analysis with 13 TeV data, measurement relative to J/ψ

□ Run 2, 2018, dedicated trigger : new or more precise results

☐ Almost 3 x more signal sample

Prompt $\eta_c(1S)$ production

\Box First measurement of $\eta_c(1S)$ production cross section at 13 TeV

EPJC 80 (2020) 191 $\sqrt{s} = 13 \text{ TeV}$, $\int Ldt \sim 2 \text{ fb}^{-1}$

$$(\sigma_{\eta_c})_{13 \text{ TeV}}^{6.5 \text{ GeV} < p_T < 14.0 \text{ GeV}, 2.0 < y < 4.5} = 1.26 \pm 0.11 \pm 0.08 \pm 0.14 \text{ }\mu\text{b}$$

- \Box Color Single model prediction: Feng,Shao,Lansberg,Zhang,Usachov,He NPB 945 (2019) 114662 $1.56^{+0.83}_{-0.49}$ scale $^{+0.38}_{-0.17}$ CT14NLO μ b
- □ Consistent with being described by CSM
- ☐ Run 2, 2018, dedicated trigger : new or more precise results

EPJC 84 (2024) 1274

 \sqrt{s} = 13 TeV, $\int Ldt \sim 2.2 \text{ fb}^{-1}$

$$(\sigma_{\eta_c}/\sigma_{J/\psi})^{5.0 < p_T < 20.0 \,\text{GeV/}c, \ 2.0 < y < 4.0}$$
 $(\sigma_{\eta_c})^{5.0 < p_T < 14.0 \,\text{GeV/}c, \ 2.0 < y < 4.0}$ $= 1.32 \pm 0.14 \pm 0.09 \pm 0.13.$ $= 1815 \pm 189 \pm 120 \pm 192 \,\text{nb}$

☐ √s cross-section dependence

Prompt $\eta_c(1S)$ production

Slope persists at the level of ≥ 3σ, different spectra for the two states

Prompt $\eta_c(1S)$ production

□ p_T-differential cross-section, how reliable a description at p_T~5 GeV ?

Prompt $\eta_c(2S)$ production at LHCb

☐ Predictions for three different CO LDME sets

Table 7 Upper limits (UL) at 95% CL for $\eta_c(2S)$ relative to J/ψ and $\eta_c(2S)$ absolute prompt production cross-section, and its comparison with NLO NRQCD theoretical prediction (Refs. [7–10])

p _T [GeV/c]	UL 95% CL	Shao et al. [8]	Gong et al. [9]	Bodwin et al. [10]	
	$\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p}$	<u>p</u> [pb]		_	
5.0-14.0	< 426	664 ± 297	365 ± 135	855 ± 123	
5.0-20.0	< 401	674 ± 304	368 ± 138	870 ± 126	
	$(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to 1})$	$(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p\overline{p}})/(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})$			
5.0-14.0, y < 4.0	< 0.14	0.48 ± 0.22	0.27 ± 0.10	0.62 ± 0.09	
5.0-14.0, y < 4.5		0.43 ± 0.19	0.24 ± 0.09	0.55 ± 0.08	
5.0-20.0, y < 4.0	< 0.14				

- ☐ Essential to understand and further constrain uncertainties in theory
- ☐ Essential input for accounting **feeddown contributions** to lower states
- \Box h_c and η_c (2S) production cross-sections and decay branching ratios are needed

Prompt $\eta_c(2S)$ production at LHCb

EPJC 84 (2024) 1274

 \sqrt{s} = 13 TeV, $\int Ldt \sim 2.2 \text{ fb}^{-1}$

- ☐ Essential input for accounting **feeddown contributions** to lower states
- h_c and η_c(2S) production cross-sections times decay branching ratios are measured

for the first time

$$\frac{(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.11 (0.14),$$

$$\frac{(\sigma_{h_c(1P)} \times \mathcal{B}_{h_c(1P) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.12 (0.13)$$

- □ Branching fractions of $\eta_c(2S) \rightarrow ppbar$ needed
- ☐ Call for BES III measurement

Charmonium inclusive production in b-hadron decays

☐ Inclusive production in b-decays, charmonium decays to proton-antiproton **EPJC 84 (2024) 1274** $\sqrt{s} = 13 \text{ TeV}$, [Ldt ~ 2.2 fb⁻¹

- □ Precision limited by systematic uncertainties on branching fractions of η_c(1S) → ppbar and b → J/ψ X
- Call to publish the BES III analysis

χ_c production in b-decays at LHCb

☐ Charmonium reconstructed via decays to ppbar

Table 8 Branching fractions of χ_{cJ} production in inclusive *b*-hadron decays. The quoted uncertainties are statistical, systematic and the related to the $\mathcal{B}_{\chi_{cJ} \to p\overline{p}}$, $\mathcal{B}_{J/\psi \to p\overline{p}}$, and $\mathcal{B}_{b \to J/\psi X}$ uncertainties. The val-

ues are compared with results from analysis of charmonia production using decays to $\phi\phi$ [38] and the world average values [11]

	$c\overline{c} \rightarrow p\overline{p}$, measured	$c\overline{c} \to \phi \phi $ [38]	World average [11]
$\mathcal{B}_{b\to\chi_{c0}X}\times 10^{-3}$	$3.05 \pm 0.54 \pm 0.08 \pm 0.29$	3.02 ± 1.08	15 ± 6
$\mathcal{B}_{b \to \chi_{c1} X} \times 10^{-3}$	$5.11 \pm 1.20 \pm 0.14 \pm 0.50$	2.76 ± 1.09	14 ± 4
$\mathcal{B}_{b \to \chi_{c2} X} \times 10^{-3}$	$1.54 \pm 1.13 \pm 0.04 \pm 0.15$	1.15 ± 0.42	6.2 ± 2.9

- ☐ Statistically limited
- ☐ Spin counting not observed
- \Box Improved precision (or contributed to a better average) for χ_{c0} (and χ_{c1}) production in b-decays, consistent with previous LHCb results
- \Box Improving precision for **branching fractions of** χ_{ci} **decays** to ppbar and $\phi\phi$ will further improve precision

EPJC 77 (2017) 609

- Charmonium reconstructed via decays to φφ
- True φφ combinations extracted using 2D fit technique

□ First measurement of $η_c(2S)$ production in b-decays First evidence for $η_c(2S) → φφ$

$$\frac{\mathcal{B}(b \to \eta_c(2S)X) \times \mathcal{B}(\eta_c(2S) \to \phi\phi)}{\mathcal{B}(b \to \eta_c(1S)X) \times \mathcal{B}(\eta_c(1S) \to \phi\phi)} = 0.040 \pm 0.011 \pm 0.004$$

 \square Measure $\eta_c(2S)$ hadroproduction, free from feed-down contributions

χ_c production in b-decays at LHCb

EPJC 77 (2017) 609

LHCb

- Charmonium reconstructed via decays to $\phi\phi$

First measurement of χ_{c0} production in b-decays

$$\mathcal{B}(b \to \chi_{c0} X) = (3.02 \pm 0.47_{stat} \pm 0.23_{syst} \pm 0.94_{\mathcal{B}}) \times 10^{-3}$$

 $\eta_c(1S)$

 \square Most precise measurements of χ_{c1} and χ_{c2} production in b-decays, consistent with Bfactories

Promising channel to study χ_c polarization PRD 103 (2021) 9, 096006

Less public results, coverage quality intermezzo

Results with LHCb physics reviews, with LHCb working group or analysis being finalized

χ_c production in b-decays at LHCb

- Charmonium reconstructed via decays to φφ
- True φφ combinations extracted using 2D fit technique

■ New analysis with Run 2 data

Interference effects with φφ continuum

considered for the first time

Interference model

Adding interference term with non-resonant $\phi\phi$ background

Plane wave $(\frac{K(x)}{K(M)})^L Ce^{i\varphi}$ allowed to interfere with RBW Creates interfering term with the sum of a $\sin \varphi$ and a $\cos \varphi$ contribution

$$RBW_{wI}(x) = \frac{x \times \Gamma_f}{(\Delta M^2)^2 + M^2 \Gamma_f^2} + 2C(\frac{K(x)}{K(M)})^L \frac{\sqrt{x \times \Gamma_f} \times (\Delta M^2 \cos \varphi - M \Gamma_f \sin \varphi)}{(\Delta M^2)^2 + M^2 \Gamma_f^2}$$

But degeneracy between $\sin \varphi$ part and RBW, so introducing $D=C\cos \varphi$ and the simpler model:

$$RBW_{wI}^{simple} = \frac{x \times \Gamma_f}{(x^2 - M^2)^2 + M^2\Gamma_f^2} + 2D(\frac{K(x)}{K(M)})^L \frac{\sqrt{x \times \Gamma_f} \times (x^2 - M^2)}{(x^2 - M^2)^2 + M^2\Gamma_f^2}$$

Impact on mass and width modeled perfectly
But $\sin \varphi$ part absorbed in the RBW shape \Rightarrow extra systematic on ratios by comparing without interference

χ_c production in b-decays at LHCb

Interference effects with φφ continuum

considered for the first time

 \Box About 2σ and 3σ for η_c states (L = 1), compatible to zero for others

χ_c production in b-decays at LHCb

- Charmonium reconstructed via decays to φφ
- □ New analysis with Run 2 data, main results

	car c o par p	Run 1 $c\bar{c} ightarrow \phi \phi$	Run 2 $c\bar{c} \rightarrow \phi \phi$	Average $c\bar{c} ightarrow \phi \phi$
$\mathcal{B}(b \to \chi_{c0} X)(10^{-3})$	$3.05 \pm 0.54 \pm 0.08 \pm 0.29$	$3.12 \pm 0.49 \pm 0.23 \pm 0.87$	$0.22 \pm 0.20 \pm 0.65$	$2.47 \pm 0.20 \pm 0.23 \pm 0.69$
$\mathcal{B}(b\to\chi_{c1}X)(10^{-3})$	$5.11 \pm 1.20 \pm 0.14 \pm 0.50$	$3.08 \pm 0.68 \pm 0.25 \pm 0.86$	$0.21 \pm 0.28 \pm 0.74$	$2.68 \pm 0.20 \pm 0.28 \pm 0.75$
$\mathcal{B}(b \to \chi_{c2} X)(10^{-3})$	$1.54 \pm 1.13 \pm 0.04 \pm 0.15$	$1.18 \pm 0.19 \pm 0.07 \pm 0.33$	$0.15 \pm 0.12 \pm 0.30$	$1.10 \pm 0.12 \pm 0.12 \pm 0.31$
$\mathcal{B}(b \to \eta_c(2S)X) \times$	/	$7.19 \pm 1.98 \pm 0.72 \pm 1.98$	$0.97 \pm 0.58 \pm 2.09$	$7.49 \pm 0.87 \pm 0.72 \pm 2.07$
$\mathcal{B}(\eta_c(2S) \to \phi \phi)(10^{-7})$	·			
$^{M}η_{c}$		$2982.81 \pm 0.99 \pm 0.45$	$46 \pm 0.50 \pm 0.39$	$2984.12 \pm 0.45 \pm 0.45$

- ☐ Branching fractions and mass measurements agree between run 1 and run 2, between different data samples, and different charmonium reconstruction modes
- ☐ Precision improves with more data as expected
- \Box Complementary reconstruction modes for χ_c states
- \square Most precise single measurement of the $\eta_c(1S)$ mass

Simultaneous study of J/ ψ and η_c (1S) prompt production, reminder

- $\hfill \square$ Simultaneous fit for available J/ψ and $\eta_c(1S)$ prompt production results
- □ Relation between LDME from HQSS:

$$\langle O_1^{\eta_c}(^1S_0)\rangle = \frac{1}{3}\langle O_1^{J/\psi}(^3S_1)\rangle,$$

$$\langle O_8^{\eta_c}(^1S_0)\rangle = \frac{1}{3}\langle O_8^{J/\psi}(^3S_1)\rangle,$$

$$\langle O_8^{\eta_c}(^3S_1)\rangle = \langle O_8^{J/\psi}(^1S_0)\rangle,$$

$$\langle O_8^{\eta_c}(^1P_1)\rangle = 3\langle O_8^{J/\psi}(^3P_0)\rangle.$$

☐ Fix CS LDME from potential model

$$\langle O_8^{J/\psi}(^3S_1)\rangle = 1.16 \,\text{GeV}^3$$

 \Box χ^2 minimization

— Han et al.

Zhang et al.

Shao et al.

Chao et al.

Butenshoen et al.

Gaon et al.

Feng et al.

Simultaneous study of $\psi(2S)$ and $\eta_c(2S)$ prompt production

- \Box Simultaneous fit for available ψ(2S) and η_c(2S) prompt production results
- □ Relation between LDME from HQSS:

$$\langle \mathcal{O}_{1,8}^{\eta_c(2S)}(^1S_0)\rangle = \frac{1}{3}\langle \mathcal{O}_{1,8}^{\psi(2S)}(^3S_1)\rangle$$
$$\langle \mathcal{O}_{8}^{\eta_c(2S)}(^3S_1)\rangle = \langle \mathcal{O}_{8}^{\psi(2S)}(^1S_0)\rangle$$
$$\langle \mathcal{O}_{8}^{\eta_c(2S)}(^1P_1)\rangle = 3\langle \mathcal{O}_{8}^{\psi(2S)}(^3P_0)\rangle$$

☐ Fix CS LDME from potential model

$$\langle \mathcal{O}_1^{\psi(2S)}(^3S_1)\rangle = 0.76 \text{ GeV}^3$$

 \Box χ^2 minimization

Han et al.Zhang et al.

- ☐ Agreement with predictions given large uncertainties
- Negative LDME values ?
- ☐ Charmonia from b-decays will be added

What do we learn from this phenomenology game

☐ This technique constrains theory using simultaneously results on charmonia hadroproduction and on charmonia from b-inclusive decays under assumptions of factorization, universality and HQSS, with different charmonium states

□ Alternatively, once hadroproduction and production in b-decays measured for charmonium states with linked LDMEs, the above assumptions can be tested quantitatively

Central Exclusive Production

 \Box CEP event: diffractive process of the form pp \rightarrow pXp, large rapidity gap

After D. d'Enterria arxiv 0806.0883

Central Exclusive Production

- ☐ Mediated by the exchange of a colourless object
- □ QCD tests with clean theoretical interpretation
- ☐ Only **CS production**
- ☐ Cross-section can be calculated in pQCD and (at LO) is proportional to the square of the gluon PDF, g(x)

$$pp(\bar{p}) \to p + X + p(\bar{p})$$

t-channel exchange of a colourless object: γ , pomeron \rightarrow X + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe

 $\mu^{+}\mu^{-}$, $e^{+}e^{-}$, $\pi^{+}\pi^{-}$, $W^{+}W^{-}$

QED "standard candle" process continuum lepton pair production

 $\rho,\,J/\psi,\,Y,\,Z,\,\dots$

Photoproduction: Test of QCD and description of diffraction and soft processes. Sensitive to diffractive PDF at very low x (to 5 x 10-6)

 X_c , X_b , $\pi^+\pi^-$, Dijet, gg, ...

Test of QCD, and hadron spectroscopy Pomeron content at low Q² dominated by gluons; access to scalar and tensor glueballs

■ With LHCb: In pp collisions, probe at very low Bjorken values, down to x~10⁻⁶

Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV

☐ Herschel detector increases rapidity gap in forward region

SciPost Phys. 18, 071 (2025)

Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV

Differential cross sections in rapidity

bins

☐ Control sample – proton dissociation

β J/ψ c 000000 p p

□ Feeddown from higher charmonium states (ψ(2S), $χ_{ci}$, $χ_{c1}$ (3872)) to the J/ψ sample taken into account

Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV

SciPost Phys. 18, 071 (2025)

☐ Differential cross-sections compared to theory predictions

☐ Integrated cross-sections times branching fractions

$$\begin{split} \sigma_{J/\psi \to \mu^+\mu^-}(2.0 < y_{J/\psi} < 4.5, 2.0 < \eta_{\mu^\pm} < 4.5) &= 400 \pm 2 \pm 5 \pm 12 \,\mathrm{pb}\,, \\ \sigma_{\psi(2S) \to \mu^+\mu^-}(2.0 < y_{\psi(2S)} < 4.5, 2.0 < \eta_{\mu^\pm} < 4.5) &= 9.40 \pm 0.15 \pm 0.13 \pm 0.27 \,\mathrm{pb} \end{split}$$

- □ Good agreement with J/ψ NLO pre-(post-)diction
- \square ψ (2S) calculations to be revisited
- ☐ Confirms a hint of NLO importance from the analysis at 7 TeV

Photo-production cross-section

SciPost Phys. 18, 071 (2025)

☐ The cross-section for the CEP of vector mesons in pp collisions is related to the **photo-production cross-section**:

- □ Compilation of photo-production cross-section measurements
- ☐ H1 measured power-law: $\sigma_{VD \rightarrow J/WD}(W) = 81(W/90 \text{ GeV})^{0.67} \text{ nb}$
- ☐ Good agreement between LHCb results at 7 and 13 TeV
- □ J/ψ photo-production cross-section: agreement to theory prediction; no deviation from a pure power-law extrapolation of HERA data

	Outlook		
3	Quarkonium serves a powerful probe for QCD-driven production mecanisms consistency with minimum number of free parameters wanted		
]	The way to understanding quarkonium production is long and challenging but enjoyable		
	An impressive progress – both in theory and in experiment – marked with discoveries and		
	bright ideas and perhaps still doing the very first steps		
]	More precision and more consistency checks open the path to understanding quarkonium production mecanism		

- ☐ Major contributions from students to the presented results: (analysis part of) thesis of Valeriia Zhovkovska, long internships and ongoing theses by Shu Xian and Raoul Henderson
- ☐ Other interesting analyses awaiting new strong and motivated students

(Pseudo-)rapidity definitions

Rapidity

$$y=rac{1}{2}\lnrac{E+p_z}{E-p_z}$$

Pseudorapidity

$$\eta \equiv -\ln\!\left[\! an\!\left(rac{ heta}{2}
ight)
ight]$$