Charmonium production in FCPPN/L 2025, Qingdao, 21-25/7/2025 Vladik Balagura, Yanting Fan, Feng-Kun Guo, Jibo He, Raoul Henderson, Jean-Philippe Lansberg, Zhijun Liu, Hua-Sheng Shao, Qi Shi, Yuxuan Tang, Zhenhong Wu, Vsevolod Yeroshenko, Yixiong Zhou, Valeriia Zhovkovska, SB Contacts: Jibo He and Sergey Barsuk Charmonium: bound state of charm quark and anti-charm quark Charmonium: bound state of charm quark and anti-charm quark #### Charmonia and their decays - ☐ Hadronic final states allow to study different charmonium states simultaneously - \Box Below DD threshold: strong annihilation to two or three gluons, α_S^4 or α_S^6 dependence - \square Above \overline{DD} threshold: decays to \overline{DD} via single gluon radiation, α_S^2 dependence # **Charmonium for Chinese students** ## **Quarkonium production** ☐ Two scales of production: hard process of $Q\overline{Q}$ formation and hadronization of $Q\overline{Q}$ at softer scales $$\Box$$ Factorization: $d\sigma_{A+B o H+X} = \sum_n d\sigma_{A+B o Q \overline{Q}(n)+X} imes \left\langle \mathcal{O}^H(n) \right angle$ Short distance: perturbative cross-sections + pdf for the production of a $Q\overline{Q}$ pair Long distance matrix elements (LDME), non-perturbative part - ☐ Hadronization description - ☐ Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters - □ Colour-singlet model: intermediate QQ state is colourless and has the same J^{PC} quantum numbers as the final-state quarkonium - \square NRQCD: all viable colours and J^{PC} allowed for the intermediate Q $\overline{\mathbb{Q}}$ state, they are adjusted in the long-distance part with a given probability. Long-Distance Matrix Elements (LDME) from experimental data. *Most used since is based on an EFT and can be improved systematically* - □ Universality: same LDME for prompt production and production in b-decays; for e+e-, ep, pp, ...; all beam energies; ... - ☐ Heavy-Quark **Spin-Symmetry** (HQSS): **links between** colour-singlet (CS) and colour-octet (CO) **LDME of different quarkonium states** #### **Charmonium production: challenges** - Many puzzles are still there - Simultaneous description of J/ψ production and polarization "polarization puzzle" - Simultaneous description of η_c and J/ψ together with J/ψ photoproduction "HQSS puzzle" - Negative contribution in the cross-section - Tension with J/ψ+Zproduction - CEM not describing Pwaves production | | LDMEs | J/ψ hadropr. | J/ψ photopr. | J/ψ polar. | η_c hadropr. | |---|------------------------|-------------------|-------------------|-----------------|-------------------| | | Butenschön et al. | ✓ | ✓ | X | X | | | Chao et al. $+ \eta_c$ | ✓ | X | ✓ | ✓ | | | Zhang et al. | ✓ | X | ✓ | ✓ | | | Gong et al. | ✓ | X | ✓ | X | | | Chao et al. | ✓ | X | ✓ | X | | , | Bodwin et al. | ✓ | X | ✓ | × | M. Nefedov ## LHC detectors studying quarkonium - ☐ Quarkonium production: forward peaked & correlated HQ production at the LHC - ☐ ATLAS & CMS: mid-rapidity - ☐ LHCb: forward region, ~4% of solid angle, but ~40% of HQ production x-section ☐ Acceptance coverage, trigger threshold, hadron ID, luminosity ## **☐** Complementary cross-section measurements #### LHCb data □ Excellent performance of the LHC and the experiments ☐ LHCb integrated luminosity: ∫Ldt ~ 20 fb⁻¹ #### **Vertex reconstruction in LHCb: VErtex LOcator** - Excellent spatial resolution, down to 4 μm for single tracks - Precise **impact parameter** measurement, $\sigma_{IP} = 11.6 + 23.4/pT$ [µm] - □ Precise **primary vertex** reconstruction, $σ_{x,y} = 13 \mu m$, $σ_z = 69 \mu m$ for vertex of 25 tracks - ☐ Excellent **proper time** resolution - **□ Vertex resolution** allows to resolve fast (x~27) $B_s\bar{B}_s$ oscillations #### JINST 8 (2013) P08002, JINST 9 (2014) P09007 - ☐ 88 semi-circular microstrip Si sensors - Double-sided, R and φ layout - 300 μm thick n-on-n sensors, strip pitches from 40 to 120 μm - ☐ First active strip at 8 mm from beam axis # Charged hadron ID in LHCb: Cherenkov light detectors # **LHCb Upgrade I** - ☐ LHCb upgrade I for runs 3 and 4 - ☐ VELO new design with pixels - ☐ Upstream tracker with silicon strips, main tracker with scintillating fibers - □ **RICH** photodetectors MAPMTs - New dedicated luminometer - ☐ SMOG2 gas target integrated in VELO - ☐ All subdetectors readout at 40 MHz for a **fully software trigger using GPUs** - ☐ Can run at 5 x higher luminosity - □ 30 MHz of inelastic collisions will be reduced to ~1 MHz by the HLT1 (tracking/vertexing and muon ID) running on GPUs - ☐ Highest throughput of any HEP experiment - ☐ Many measurements directly profit from higher statistical precision (about x3 with run 3 only) # **Charmonium production vertex** □ Hadroproduction □ Prompt J/ψ production and production in b-hadron decays distinguished from the fit to pseudo-lifetime distribution □ Decays of higher resonances prompt production PV – primary vertex decay time SV – secondary vertex distinguished via pseudo-proper $t_Z = \frac{z_{SV} - z_{PV}}{p_Z} M_{q\bar{q}} \text{ or } \tau = \frac{L_{xy}}{p_T} M_{q\bar{q}}$ ☐ Production in **b-hadron decays** / non-prompt ## Historical $\eta_c(1S)$ production puzzle - \Box $\eta_c(1S)$ LDMEs determined via known HQSS relations between $\eta_c(1S)$ and J/ ψ and J/ ψ production - J/ψ prediction (NRQCD CS+CO) LHCb: EPJC 75 (2015) 311 CS prediction Butenschoen, He, Kniehl, arXiv:1411.5287 - ☐ Results described by **CS NLO**, below expected CO contribution - \square Progress in theory description, integrating LHCb result on η_c production in LDME calculations $$0 < O^{\eta_c}(^3S_1^8) < 1.46 \times 10^{-3} \text{ GeV}^3$$ - ☐ Theory description still covers limited p_T range - ☐ Further tests with measurements at different √s and of other linked observables ## Historical $\eta_c(1S)$ production puzzle \Box η_c production at \sqrt{s} =7 and 8 TeV sets new constraint on J/ ψ polarization - Impressive progress! - ☐ Still: - □ Tension with CDF data - □ Two large CO contributions cancel each other ⇒ hierarchy problem ⇒ Soft Gluon Fragmentation, etc.? # $\eta_c(1S)$ production Analysis with 13 TeV data, measurement relative to J/ψ EPJC 80 (2020) 191 □ Pseudo proper-time to separate prompt charmonium and charmonium from b-decays \sqrt{s} = 13 TeV, $\int Ldt \sim 2 \text{ fb}^{-1}$ 3200 3100 ☐ Selection (account for cross feed) - ... or pseudo proper-time fit - Good agreement between the results 2000 **EPJC 84 (2024) 1274** $\sqrt{s} = 13 \text{ TeV}$, $\int Ldt \sim 2.2 \text{ fb}^{-1}$ Analysis with 13 TeV data, measurement relative to J/ψ □ Run 2, 2018, dedicated trigger : new or more precise results ☐ Almost 3 x more signal sample ## Prompt $\eta_c(1S)$ production # \Box First measurement of $\eta_c(1S)$ production cross section at 13 TeV **EPJC 80 (2020) 191** $\sqrt{s} = 13 \text{ TeV}$, $\int Ldt \sim 2 \text{ fb}^{-1}$ $$(\sigma_{\eta_c})_{13 \text{ TeV}}^{6.5 \text{ GeV} < p_T < 14.0 \text{ GeV}, 2.0 < y < 4.5} = 1.26 \pm 0.11 \pm 0.08 \pm 0.14 \text{ }\mu\text{b}$$ - \Box Color Single model prediction: Feng,Shao,Lansberg,Zhang,Usachov,He NPB 945 (2019) 114662 $1.56^{+0.83}_{-0.49}$ scale $^{+0.38}_{-0.17}$ CT14NLO μ b - □ Consistent with being described by CSM - ☐ Run 2, 2018, dedicated trigger : new or more precise results EPJC 84 (2024) 1274 \sqrt{s} = 13 TeV, $\int Ldt \sim 2.2 \text{ fb}^{-1}$ $$(\sigma_{\eta_c}/\sigma_{J/\psi})^{5.0 < p_T < 20.0 \,\text{GeV/}c, \ 2.0 < y < 4.0}$$ $(\sigma_{\eta_c})^{5.0 < p_T < 14.0 \,\text{GeV/}c, \ 2.0 < y < 4.0}$ $= 1.32 \pm 0.14 \pm 0.09 \pm 0.13.$ $= 1815 \pm 189 \pm 120 \pm 192 \,\text{nb}$ ☐ √s cross-section dependence # Prompt $\eta_c(1S)$ production Slope persists at the level of ≥ 3σ, different spectra for the two states ## Prompt $\eta_c(1S)$ production □ p_T-differential cross-section, how reliable a description at p_T~5 GeV ? #### Prompt $\eta_c(2S)$ production at LHCb #### ☐ Predictions for three different CO LDME sets **Table 7** Upper limits (UL) at 95% CL for $\eta_c(2S)$ relative to J/ψ and $\eta_c(2S)$ absolute prompt production cross-section, and its comparison with NLO NRQCD theoretical prediction (Refs. [7–10]) | p _T [GeV/c] | UL 95% CL | Shao et al. [8] | Gong et al. [9] | Bodwin et al. [10] | | |------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--| | | $\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p}$ | <u>p</u> [pb] | | _ | | | 5.0-14.0 | < 426 | 664 ± 297 | 365 ± 135 | 855 ± 123 | | | 5.0-20.0 | < 401 | 674 ± 304 | 368 ± 138 | 870 ± 126 | | | | $(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to 1})$ | $(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p\overline{p}})/(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})$ | | | | | 5.0-14.0, y < 4.0 | < 0.14 | 0.48 ± 0.22 | 0.27 ± 0.10 | 0.62 ± 0.09 | | | 5.0-14.0, y < 4.5 | | 0.43 ± 0.19 | 0.24 ± 0.09 | 0.55 ± 0.08 | | | 5.0-20.0, y < 4.0 | < 0.14 | | | | | - ☐ Essential to understand and further constrain uncertainties in theory - ☐ Essential input for accounting **feeddown contributions** to lower states - \Box h_c and η_c (2S) production cross-sections and decay branching ratios are needed #### Prompt $\eta_c(2S)$ production at LHCb EPJC 84 (2024) 1274 \sqrt{s} = 13 TeV, $\int Ldt \sim 2.2 \text{ fb}^{-1}$ - ☐ Essential input for accounting **feeddown contributions** to lower states - h_c and η_c(2S) production cross-sections times decay branching ratios are measured for the first time $$\frac{(\sigma_{\eta_c(2S)} \times \mathcal{B}_{\eta_c(2S) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.11 (0.14),$$ $$\frac{(\sigma_{h_c(1P)} \times \mathcal{B}_{h_c(1P) \to p\overline{p}})}{(\sigma_{J/\psi} \times \mathcal{B}_{J/\psi \to p\overline{p}})} < 0.12 (0.13)$$ - □ Branching fractions of $\eta_c(2S) \rightarrow ppbar$ needed - ☐ Call for BES III measurement #### Charmonium inclusive production in b-hadron decays ☐ Inclusive production in b-decays, charmonium decays to proton-antiproton **EPJC 84 (2024) 1274** $\sqrt{s} = 13 \text{ TeV}$, [Ldt ~ 2.2 fb⁻¹ - □ Precision limited by systematic uncertainties on branching fractions of η_c(1S) → ppbar and b → J/ψ X - Call to publish the BES III analysis ## χ_c production in b-decays at LHCb ☐ Charmonium reconstructed via decays to ppbar **Table 8** Branching fractions of χ_{cJ} production in inclusive *b*-hadron decays. The quoted uncertainties are statistical, systematic and the related to the $\mathcal{B}_{\chi_{cJ} \to p\overline{p}}$, $\mathcal{B}_{J/\psi \to p\overline{p}}$, and $\mathcal{B}_{b \to J/\psi X}$ uncertainties. The val- ues are compared with results from analysis of charmonia production using decays to $\phi\phi$ [38] and the world average values [11] | | $c\overline{c} \rightarrow p\overline{p}$, measured | $c\overline{c} \to \phi \phi $ [38] | World average [11] | |--------------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------| | $\mathcal{B}_{b\to\chi_{c0}X}\times 10^{-3}$ | $3.05 \pm 0.54 \pm 0.08 \pm 0.29$ | 3.02 ± 1.08 | 15 ± 6 | | $\mathcal{B}_{b \to \chi_{c1} X} \times 10^{-3}$ | $5.11 \pm 1.20 \pm 0.14 \pm 0.50$ | 2.76 ± 1.09 | 14 ± 4 | | $\mathcal{B}_{b \to \chi_{c2} X} \times 10^{-3}$ | $1.54 \pm 1.13 \pm 0.04 \pm 0.15$ | 1.15 ± 0.42 | 6.2 ± 2.9 | - ☐ Statistically limited - ☐ Spin counting not observed - \Box Improved precision (or contributed to a better average) for χ_{c0} (and χ_{c1}) production in b-decays, consistent with previous LHCb results - \Box Improving precision for **branching fractions of** χ_{ci} **decays** to ppbar and $\phi\phi$ will further improve precision #### EPJC 77 (2017) 609 - Charmonium reconstructed via decays to φφ - True φφ combinations extracted using 2D fit technique □ First measurement of $η_c(2S)$ production in b-decays First evidence for $η_c(2S) → φφ$ $$\frac{\mathcal{B}(b \to \eta_c(2S)X) \times \mathcal{B}(\eta_c(2S) \to \phi\phi)}{\mathcal{B}(b \to \eta_c(1S)X) \times \mathcal{B}(\eta_c(1S) \to \phi\phi)} = 0.040 \pm 0.011 \pm 0.004$$ \square Measure $\eta_c(2S)$ hadroproduction, free from feed-down contributions ## χ_c production in b-decays at LHCb #### EPJC 77 (2017) 609 LHCb - Charmonium reconstructed via decays to $\phi\phi$ First measurement of χ_{c0} production in b-decays $$\mathcal{B}(b \to \chi_{c0} X) = (3.02 \pm 0.47_{stat} \pm 0.23_{syst} \pm 0.94_{\mathcal{B}}) \times 10^{-3}$$ $\eta_c(1S)$ \square Most precise measurements of χ_{c1} and χ_{c2} production in b-decays, consistent with Bfactories Promising channel to study χ_c polarization PRD 103 (2021) 9, 096006 # Less public results, coverage quality intermezzo Results with LHCb physics reviews, with LHCb working group or analysis being finalized # χ_c production in b-decays at LHCb - Charmonium reconstructed via decays to φφ - True φφ combinations extracted using 2D fit technique ■ New analysis with Run 2 data Interference effects with φφ continuum considered for the first time #### Interference model Adding interference term with non-resonant $\phi\phi$ background Plane wave $(\frac{K(x)}{K(M)})^L Ce^{i\varphi}$ allowed to interfere with RBW Creates interfering term with the sum of a $\sin \varphi$ and a $\cos \varphi$ contribution $$RBW_{wI}(x) = \frac{x \times \Gamma_f}{(\Delta M^2)^2 + M^2 \Gamma_f^2} + 2C(\frac{K(x)}{K(M)})^L \frac{\sqrt{x \times \Gamma_f} \times (\Delta M^2 \cos \varphi - M \Gamma_f \sin \varphi)}{(\Delta M^2)^2 + M^2 \Gamma_f^2}$$ But degeneracy between $\sin \varphi$ part and RBW, so introducing $D=C\cos \varphi$ and the simpler model: $$RBW_{wI}^{simple} = \frac{x \times \Gamma_f}{(x^2 - M^2)^2 + M^2\Gamma_f^2} + 2D(\frac{K(x)}{K(M)})^L \frac{\sqrt{x \times \Gamma_f} \times (x^2 - M^2)}{(x^2 - M^2)^2 + M^2\Gamma_f^2}$$ Impact on mass and width modeled perfectly But $\sin \varphi$ part absorbed in the RBW shape \Rightarrow extra systematic on ratios by comparing without interference ## χ_c production in b-decays at LHCb Interference effects with φφ continuum considered for the first time \Box About 2σ and 3σ for η_c states (L = 1), compatible to zero for others #### χ_c production in b-decays at LHCb - Charmonium reconstructed via decays to φφ - □ New analysis with Run 2 data, main results | | car c o par p | Run 1 $c\bar{c} ightarrow \phi \phi$ | Run 2 $c\bar{c} \rightarrow \phi \phi$ | Average $c\bar{c} ightarrow \phi \phi$ | |--------------------------------------------------|-----------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------| | $\mathcal{B}(b \to \chi_{c0} X)(10^{-3})$ | $3.05 \pm 0.54 \pm 0.08 \pm 0.29$ | $3.12 \pm 0.49 \pm 0.23 \pm 0.87$ | $0.22 \pm 0.20 \pm 0.65$ | $2.47 \pm 0.20 \pm 0.23 \pm 0.69$ | | $\mathcal{B}(b\to\chi_{c1}X)(10^{-3})$ | $5.11 \pm 1.20 \pm 0.14 \pm 0.50$ | $3.08 \pm 0.68 \pm 0.25 \pm 0.86$ | $0.21 \pm 0.28 \pm 0.74$ | $2.68 \pm 0.20 \pm 0.28 \pm 0.75$ | | $\mathcal{B}(b \to \chi_{c2} X)(10^{-3})$ | $1.54 \pm 1.13 \pm 0.04 \pm 0.15$ | $1.18 \pm 0.19 \pm 0.07 \pm 0.33$ | $0.15 \pm 0.12 \pm 0.30$ | $1.10 \pm 0.12 \pm 0.12 \pm 0.31$ | | $\mathcal{B}(b \to \eta_c(2S)X) \times$ | / | $7.19 \pm 1.98 \pm 0.72 \pm 1.98$ | $0.97 \pm 0.58 \pm 2.09$ | $7.49 \pm 0.87 \pm 0.72 \pm 2.07$ | | $\mathcal{B}(\eta_c(2S) \to \phi \phi)(10^{-7})$ | · | | | | | $^{M}η_{c}$ | | $2982.81 \pm 0.99 \pm 0.45$ | $46 \pm 0.50 \pm 0.39$ | $2984.12 \pm 0.45 \pm 0.45$ | - ☐ Branching fractions and mass measurements agree between run 1 and run 2, between different data samples, and different charmonium reconstruction modes - ☐ Precision improves with more data as expected - \Box Complementary reconstruction modes for χ_c states - \square Most precise single measurement of the $\eta_c(1S)$ mass ## Simultaneous study of J/ ψ and η_c (1S) prompt production, reminder - $\hfill \square$ Simultaneous fit for available J/ψ and $\eta_c(1S)$ prompt production results - □ Relation between LDME from HQSS: $$\langle O_1^{\eta_c}(^1S_0)\rangle = \frac{1}{3}\langle O_1^{J/\psi}(^3S_1)\rangle,$$ $$\langle O_8^{\eta_c}(^1S_0)\rangle = \frac{1}{3}\langle O_8^{J/\psi}(^3S_1)\rangle,$$ $$\langle O_8^{\eta_c}(^3S_1)\rangle = \langle O_8^{J/\psi}(^1S_0)\rangle,$$ $$\langle O_8^{\eta_c}(^1P_1)\rangle = 3\langle O_8^{J/\psi}(^3P_0)\rangle.$$ ☐ Fix CS LDME from potential model $$\langle O_8^{J/\psi}(^3S_1)\rangle = 1.16 \,\text{GeV}^3$$ \Box χ^2 minimization — Han et al. Zhang et al. Shao et al. Chao et al. Butenshoen et al. Gaon et al. Feng et al. # Simultaneous study of $\psi(2S)$ and $\eta_c(2S)$ prompt production - \Box Simultaneous fit for available ψ(2S) and η_c(2S) prompt production results - □ Relation between LDME from HQSS: $$\langle \mathcal{O}_{1,8}^{\eta_c(2S)}(^1S_0)\rangle = \frac{1}{3}\langle \mathcal{O}_{1,8}^{\psi(2S)}(^3S_1)\rangle$$ $$\langle \mathcal{O}_{8}^{\eta_c(2S)}(^3S_1)\rangle = \langle \mathcal{O}_{8}^{\psi(2S)}(^1S_0)\rangle$$ $$\langle \mathcal{O}_{8}^{\eta_c(2S)}(^1P_1)\rangle = 3\langle \mathcal{O}_{8}^{\psi(2S)}(^3P_0)\rangle$$ ☐ Fix CS LDME from potential model $$\langle \mathcal{O}_1^{\psi(2S)}(^3S_1)\rangle = 0.76 \text{ GeV}^3$$ \Box χ^2 minimization Han et al.Zhang et al. - ☐ Agreement with predictions given large uncertainties - Negative LDME values ? - ☐ Charmonia from b-decays will be added ## What do we learn from this phenomenology game ☐ This technique constrains theory using simultaneously results on charmonia hadroproduction and on charmonia from b-inclusive decays under assumptions of factorization, universality and HQSS, with different charmonium states □ Alternatively, once hadroproduction and production in b-decays measured for charmonium states with linked LDMEs, the above assumptions can be tested quantitatively #### **Central Exclusive Production** \Box CEP event: diffractive process of the form pp \rightarrow pXp, large rapidity gap After D. d'Enterria arxiv 0806.0883 #### **Central Exclusive Production** - ☐ Mediated by the exchange of a colourless object - □ QCD tests with clean theoretical interpretation - ☐ Only **CS production** - ☐ Cross-section can be calculated in pQCD and (at LO) is proportional to the square of the gluon PDF, g(x) $$pp(\bar{p}) \to p + X + p(\bar{p})$$ t-channel exchange of a colourless object: γ , pomeron \rightarrow X + rapidity gaps Single elastic process \rightarrow protons escape undetected in beampipe $\mu^{+}\mu^{-}$, $e^{+}e^{-}$, $\pi^{+}\pi^{-}$, $W^{+}W^{-}$ QED "standard candle" process continuum lepton pair production $\rho,\,J/\psi,\,Y,\,Z,\,\dots$ Photoproduction: Test of QCD and description of diffraction and soft processes. Sensitive to diffractive PDF at very low x (to 5 x 10-6) X_c , X_b , $\pi^+\pi^-$, Dijet, gg, ... Test of QCD, and hadron spectroscopy Pomeron content at low Q² dominated by gluons; access to scalar and tensor glueballs ■ With LHCb: In pp collisions, probe at very low Bjorken values, down to x~10⁻⁶ # Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV ☐ Herschel detector increases rapidity gap in forward region **SciPost Phys. 18, 071 (2025)** ## Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV Differential cross sections in rapidity bins ☐ Control sample – proton dissociation β J/ψ c 000000 p p □ Feeddown from higher charmonium states (ψ(2S), $χ_{ci}$, $χ_{c1}$ (3872)) to the J/ψ sample taken into account #### Central Exclusive Production of J/ ψ and ψ (2S) at 13 TeV SciPost Phys. 18, 071 (2025) ☐ Differential cross-sections compared to theory predictions ☐ Integrated cross-sections times branching fractions $$\begin{split} \sigma_{J/\psi \to \mu^+\mu^-}(2.0 < y_{J/\psi} < 4.5, 2.0 < \eta_{\mu^\pm} < 4.5) &= 400 \pm 2 \pm 5 \pm 12 \,\mathrm{pb}\,, \\ \sigma_{\psi(2S) \to \mu^+\mu^-}(2.0 < y_{\psi(2S)} < 4.5, 2.0 < \eta_{\mu^\pm} < 4.5) &= 9.40 \pm 0.15 \pm 0.13 \pm 0.27 \,\mathrm{pb} \end{split}$$ - □ Good agreement with J/ψ NLO pre-(post-)diction - \square ψ (2S) calculations to be revisited - ☐ Confirms a hint of NLO importance from the analysis at 7 TeV #### **Photo-production cross-section** SciPost Phys. 18, 071 (2025) ☐ The cross-section for the CEP of vector mesons in pp collisions is related to the **photo-production cross-section**: - □ Compilation of photo-production cross-section measurements - ☐ H1 measured power-law: $\sigma_{VD \rightarrow J/WD}(W) = 81(W/90 \text{ GeV})^{0.67} \text{ nb}$ - ☐ Good agreement between LHCb results at 7 and 13 TeV - □ J/ψ photo-production cross-section: agreement to theory prediction; no deviation from a pure power-law extrapolation of HERA data | | Outlook | | | |---|-----------------------------------------------------------------------------------------------------------------------------------------|--|--| | 3 | Quarkonium serves a powerful probe for QCD-driven production mecanisms consistency with minimum number of free parameters wanted | | | |] | The way to understanding quarkonium production is long and challenging but enjoyable | | | | | An impressive progress – both in theory and in experiment – marked with discoveries and | | | | | bright ideas and perhaps still doing the very first steps | | | |] | More precision and more consistency checks open the path to understanding quarkonium production mecanism | | | - ☐ Major contributions from students to the presented results: (analysis part of) thesis of Valeriia Zhovkovska, long internships and ongoing theses by Shu Xian and Raoul Henderson - ☐ Other interesting analyses awaiting new strong and motivated students # (Pseudo-)rapidity definitions Rapidity $$y= rac{1}{2}\ln rac{E+p_z}{E-p_z}$$ Pseudorapidity $$\eta \equiv -\ln\!\left[\! an\!\left(rac{ heta}{2} ight) ight]$$