

Installation and commissioning of the JUNO 3-inch PMT system

Yujie Niu ^{1,2} On behalf of the JUNO collaboration

16th France-China Particle Physics Network/Laboratory workshop

July 22nd, 2025

¹Institute of High Energy Physics, Beijing, China ² University of Chinese Academy of Sciences, Beijing, China

Outline

- > SPMT system design, production and test
- > Installation situation
- Commissioning status
 - Water phase
 - LS-water phase
- Summary

SPMT system introduction

2016-2017

System design

2018-2020

PMT production

2020-2022

PMT instrumentation

2021-2022

Electronics production

2022-2023

• Electronics integration

2023-2024

Installation

2025

Commissioning

- **25600** 3-inch PMTs (**small PMT**, or **sPMT**) and frontend electronics: **all underwater**
- The primary goal is measuring the charge non-linearity of 20-inch PMTs (Large PMT, or LPMT)
- Other physics potentials: measurement of oscillation parameters ($\sin^2 2\theta_{12}$, Δm^2_{21}), searching for **proton decay**, ...

CPC 46 (2022) 123001, CPC 47 (2023) 113002

LPMTs and surrounding sPMTs

Electronics with 128 3-inch PMTs

SPMT system production and test

SPMT production and test

- Totally 26000 3-inch PMTs produced by Hainan Zhangchuang (HZC)
- Performance tests and study for 2 years, meeting the requirement of JUNO
- The largest sample of 3-inch PMTs ever produced and studied in detail

NIM, A 1005 (2021) 165347

3-inch PMTs mass production

Parameters	Class	Requirement		Test fraction		Tolerance	Results	Rejection
		(limit)	(mean)	HZC	JUNO	of diff.	(mean)	number
Φ (glass bulb)	A	(78, 82) mm	_	100%	10%	_	OK	0
QE@420 nm	Α	>22%	>24%	100%	10%	<5%	24.9%	1
High Voltage	Α	(900,1300) V	-	100%	10%	<3%	1113 V	1
SPE resolution	Α	<45%	<35%	100%	10%	<15%	33.2%	0
PV ratio	Α	> 2	> 3	100%	10%	_	3.2	0
DCR@0.25 PE	Α	<1.8 kHz	<1.0 kHz	100%	10%	_	512 Hz	1
DCR@3.0 PE	Α	<30 Hz	_	100%	10%	_	7.2 Hz	1
TTS (σ)	В	<2.1 ns	_	_	3%	_	1.6 ns	0
Pre-pulse	В	<5%	<4.5%	_	3%	_	0.5%	0
After-pulse	В	<15%	<10%	_	3%	_	3.9%	11
QE non-uniformity	В	<11%	_	_	3%	_	5%	0
Φ (eff. cathode)	В	>74 mm	_	_	3%	_	77.2 mm	0
QE@320 nm	С	>5%	_	_	1%	_	10.2%	0
QE@550 nm	С	>5%	_	_	1%	_	8.6%	0
Aging	D	>200 nA years	_	-	3 PMTs	_	OK	0

sPMT integration

A group of 16 PMTs

Cable and HV connector

Integration procedure

- sPMT integration with HV splitter, cable, connector and waterproofing
- HV tests for all sPMTs and 13% for water pressure test

Acceptance tests after integration

- PMT functional tests including gain, single photon electron, dark noise, 99.3% qualified.
- The rest were replaced due to high DCRs, deviations from the target gain, poor charge resolution, or electrical short circuits.

PMT font-end integration test system using early version of JUNO electronics

PMT single photoelectron spectrum

Component of electronics

Global Control Unit: control and transfer data to DAQ

Heat dissipation and mechanical structure

Electronics overview

Front-End board: 8 CATROCs for signal digitization (France)

Underwater Box (Chile, US)

HV splitter: supply high voltage and split signal (Chile, Russian)

128 channels contained in an underwater stainless-steel box

Electronics performance

 CATIROC: an integrated chip designed by the Omega laboratory (2021 JINST 16 P05010)

• Noise: 0.015 pC (0.03 PE), at 3×10⁶ gain

Time resolution: < 150 ps

SPE spectrum

Charge measuring range

Time measurement

Configurations					
SSH RC	50				
PA gain	20				
Discr. thr	900 DACu				
HG/LG thr	720 DACu				
SSH Peak time	26 ns				
$\sigma_{ m charge, HG}$	2 ADCu (0.015 pC)				
$\sigma_{ m charge,LG}$	1 ADCu (0.74 pC)				
Calibration fit					
intercept (p0)	[ADCu]				
HG	66.9 ± 0.3				
LG	68.6 ± 0.1				
LSB (1/p1)	[fC/ADCu]				
HG	7.9 ± 0.4				
LG	73.6 ± 0.1				
residuals	< 4 ADCu				
variations					
within channels	< 5%				
	< 5%				

Electronics integration

- 200+4 spares sets (26,112 channels) of electronics assembled at JUNO
- Functional test for all channels with PMTs

Leakage tests for all integrated underwater boxes with a customized SF₆ gas-

based system, arXiv:2505.24142

Electronics integration lab

Electronics assembling procedure

SPMT installation and commissioning

sPMT installation overview

- SPMT installation over 2 years and was finished on Dec.5, 2025
- Preparation work in the surface assemble building
 - Cleaning, cable arrangement, PMT sampling test, electronics test...
- Installation for 25,587 PMTs and 200 electronics underwater boxes
 - Installation speed: Average 101 PMTs/working day. 1 or 2 group of workers (3-6 workers).

SPMT installation

Electronics lifting and installation

Different regions require different strategies

- Region 1 and 2: people directly stand in the windows to install.
- Region 3: Outside platform
- Region 4: Scissors lift

PMT installation

- 25k sPMTs installed one by one on the stainless steel truss
- **Checking after installation**
 - Check cable in each window
 - Check safety and cleanness

Underwater electronics installation

- Supervise on the side
- Tests after the installation
 - Air vacuum leakage test
 - Pedestal test
 - Connect to PMTs
 - The overall installation checking include label and screw ...
 - Pedestal test again
 - Light-off test
 - Check and repair the suspicious PMTs or cables

Installation quality assurance

- Developed a WeChat app to scan QR code to ensure the installation position for each PMT and electronics box
- On-site supervision and visual inspection

Installation quality control: lights-off tests

- 10 times of lights-off tests during installation
- Replaced and repaired problematic channels

Operate in electronics room

JUNO detector with lights off

20 $Z(m_0)$ Y(m)PMT: Hit map

Event rate vs. location

Water phase performance

- 44 days of water filling from Dec.18th, 2024 to Feb.1st, 2025
- PMT dark count rate reduced to 530 Hz due to the covering of the detector

Average gain: 3.8×10^6

Average hit rate: 530 Hz

RMS ~2.6ADCu (about 0.05PE) for electronics noise

Calibration source performance

- The sPMT system can observe the calibration source clearly
- More challenge and excitement are waiting for us!

Summary

- After a decade of hard work, sPMT system construction completed
 - ~25k 3-inch PMTs with HV divider, frontend cable, connectors and waterproofing
 - 200 electronics with signal digitizer, control, HV supply and underwater mechanics
- Detector commissioning ongoing. Physics data taken coming soon.

