MIMAC -35cm 3D-Directional Direct Detection for Dark Matter Search and Neutron Spectroscopy

Olivier Guillaudin, Nadine Sauzet, Ilias Ourahou, Zhiyong Zhang, Charling Tao, Daniel Santos

MIMAC (MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble): D. Santos, Ilias Ourahou (PhD), F. Malek, F. Naraghi

- SDI: O. Guillaudin, N. Sauzet

- Electronics : O. Bourrion, C. Hoarau, E. Lagorio

- Data Acquisition: G. Dargaud

- COMIMAC (quenching): J-F. Muraz

CCPM (Marseille): C. Tao, J. Busto

IRSN-LMDN (Cadarache): M. Petit, T. Vinchon (neutron spectroscopy)

IHEP (Beijing-China): Wang Zhimin

USTC (University of Science and Technology of China, Hefei): Zhang Zhiyong SJTU(Shanghai Jiao tong University): Wang Shaobo, Han Ke, Zhou Ning, Tao Yi TSINGHUA University (Beijing-China): Yue Qian (China JinPing underground Laboratory (CJPL))

SHAO(Shanghai Astronomical Observatory): Shan Huan Yuan

Dark Matter Directional detection principle

The only signature able to correlate the rare events in a detector to the DM galactic halo!!

MIMAC: Detection strategy

Scheme of a MIMAC µTPC

Evolution of the collected charges on the anode

Measurement of the ionization energy:

Charge integrator connected to the mesh coupled to a FADC sampled at 50 MHz

MIMAC-10cm-bi-chamber module

 $C_4H_{10} + 50\% CHF_3$ at 30 mbar

Light WIMP mass

Axial coupling

Example of a proton recoil of 6 keV_{ee} (8.6 keV_{nr})

 $- \rightarrow$ Sampling at 50 MHz (20 ns)

 $C_4H_{10} + .50\% CHF_3$ at 30 mbar

Demonstration of directional detection with mono-energetic neutron fields

- For the low energy range (keV), the AMANDE facility (ASNR (ex-IRSN)-Cadarache) provides mono-energetic neutron fields
- The energy of the mono-energetic neutron field is defined by the angle of **each nuclear recoil** track with respect to the neutron direction...

But the ionization energy of the recoil is different of its kinetic energy...

It is quenched!!

At low energies... 27 keV neutron field Proton and carbon recoils give quite the same neutron energy!

C. Beaufort et al 2024 JINST 19 P05052, arXiv:2312.12842

The kinetic energy is reconstructed with:

- the Ionization quenching factor measured by COMIMAC
- understanding the ion contribution to the signal

16th FCPPL Workshop, Qingdao (China) July 23rd 2025

COMIMAC facility for IQF measurements

MIMAC Comimac

Balogh, L., Beaufort, C. *et al*. Measurements of the ionization efficiency of protons in methane.

Eur. Phys. J. C 82, 1114 (2022).

16th FCPPL Workshop, Qingdao (China) July 23rd 2025

Proton recoil track lengths produced by a mono-energetic neutron field of 27 keV as a function of their ionization energy

These H⁺ recoils are very useful in characterizing the nuclear recoils searched for DM detection

Monoenergetic measurements: detection of target pollution

Fast neutron spectroscopy from 1 MeV up to 15 MeV with Mimac-FastN, a mobile and directional fast neutron spectrometer, N. Sauzet, D. Santos, O. Guillaudin, G. Bosson, J. Bouvier, T. Descombes, M. Marton, J.F. Muraz, NIM A 965 (2020) 163799

A large energy range of neutron fields

50% C₄H₁₀ 50% CHF₃ 30 mbar 60% C₄H₁₀ 40% CHF₃ 50 mbar

95% ⁴He 5% CO₂ 700 mbar

$$E_n=27 \text{ keV}$$

E_n=127 *keV*

E_n=1.2 MeV

D. Maire et al.

 $^{\prime\prime}$ Neutron energy reconstruction and fluence determination at 27 keV with the LNE-IRSN-MIMAC $\mu\text{-TPC}$ recoil detector »

IEEE Transactions on Nuclear Science, 63(3): 1934-1941, June 2016

D. Maire et al.

% First measurement of a 127 KeV neutron field with a μ -TPC spectrometer » Nuclear Science, IEEE Transactions, 61(2014) 2090

Bi-chamber-512 module (with the Cathode Signal and the new low background 10 cm detectors)

- working at 30 mbar ($C_4H_{10}+50\%$ CHF₃)
- -Permanent circulating mode
- -Remote controlled and commanded
- A periodic calibration by an X-ray generator

Installed in February 2023

MIMAC at LSM

New MIMAC low background detector

Kapton micromegas readout Piralux Pilar

Gaz: MIMAC 50 mbar

HT grille: -560 V

Drift field: -150 V/cm

16,3 % FWHM (6 keV)

Gain ~25 000

Energy threshold <1 keV

Electron track lengths produced by X-rays as a function of their energy

These electron tracks are very useful in the electron vs. nuclear recoil discrimination

Energy Calibration of both chambers

X-ray calibration of both chambers simultaneously

A typical electron event in the chamber 2

The first physics run of the Bi-chamber in february 2023 at Modane Chamber 1(old detector)- Chamber 2 (new 10 cm detector)
127 h analysed at moderate gain (470 V)
Only recoils after the BDT, mainly from the Rn progeny.
The new detector shows few Rn progeny contributions

Figure 7.16.: MPD as a function of the energy in the background selection using the BDT at Modane, from runs with a gain covering an energy range of up to 70 keV.

I. Ourahou et al. (2025)

The new 35 cm "new technology" MIMAC detector compared to the old one

The new detector (35cm side, PCB) is mounted in the bichamber at the LPSC-Grenoble

The MIMAC-35cm field cage

AUTOCALIBRATION OF THE 1792 (896 + 896) CHANNELS

1792 threshold values from the autocalibration defined by the intrinsic electronic noise on each strip.

 C_4H_{10} (30 mbar)

The first events with 3D tracks, of the background at Grenoble (May 24th 2024)

An alpha event from ²²²Rn progeny

Deuteron Recoils from the neutron capture on H H(n,gamma)²H

SRIM 3D track simulations- pure C₄H₁₀ at 30 mbar

100

200

150

100

16th FCPPL Workshop, Qingdao (China) July 23rd 2025

the « directionality »

Deuteron Recoils from the neutron capture on H H(n,gamma)²H

Mean

Energy

0.6

Std Dev

0.6702

0.3559

16th FCPPL Workshop, Qingdao (China) July 23rd 2025

New Micromegas (35cm) on Kapton/Copper made by Chinese USTC team (Hefei)

With the cooper interface

The future... $MIMAC - 1m^3$

16 bi-chamber modules (2x 35x35x25 cm³)

New technology anode 35cmx35cm

New electronic board (1792 channels)

Only one big chamber with 4 field cages inside

First 1 m³ at Modane by the end of 2027

Second 1 m³ at Jinping by the end of 2028

financed by the Chinese partners?

Conclusions

- MIMAC has developed an important know-how on 3D nuclear recoil directional detection from 300 eV up to 15 MeV and even more...
- The nuclear recoil directional detection is the observable needed to go beyond the neutrino floor for DM search, providing the galactic signature
- The 35 x 35 cm² will be the elemental brick to build a big directional detector... for a broad purpose in physics...

A new degree of freedom is available in « low-energy » particle detection: **the 3D-directionality**

Mono-energetic neutron field (8 keV) Neutron spectrum reconstruction from proton recoils

Directional performances at 8 keV:

• Energy reconstructed agrees within 4.0% and angular resolution better than 15°

Cyprien Beaufort et al. JCAP08(2022)057

Directionality – Head-tail recognition

Deconvolution on measured 10 keV proton

- The deconvolution gives access to the time distribution of the primary electrons cloud
 - = ⇒ fine structure of the primary cloud
 - = ⇒ Head-tail recognition

C. Beaufort *et al* 2024 *JINST* **19** P05052,

arXiv:2312.12842

3D tracks of Rn progeny

Electron/recoil discrimination

Mesure:
$$\begin{cases} E_{ioni}(^{214}\text{Pb}) = 32.90 \pm 0.16 \text{ keVee} \\ E_{ioni}(^{210}\text{Pb}) = 45.60 \pm 0.29 \text{ keVee} \end{cases}$$

First measurement of 3D nuclear-recoil tracks coming from radon progeny

→ MIMAC detection strategy validation

RPR events occur at different positions in the detector...

$$z_0 \longleftrightarrow ext{Diffusion}$$

$$\begin{cases} D_T = 237.9 \, \mu\text{m}/\sqrt{\text{cm}} \\ D_L = 271.5 \, \mu\text{m}/\sqrt{\text{cm}} \end{cases}$$

Mean Projected Diffusion:

