

Highlights of ALICE recent results

Yaxian MAO (毛亚显)

Central China Normal University

(华中师范大学)

16th Workshop of France-China Particle Physics Network/Laboratory (FCPPN/L 2025)

2025年7月21-25日, 山东大学

The ALICE Collaboration

- 40 countries
- 169 institutes
- 2004 members

• Goal:

- Properties of QCD matter at extreme conditions
- Characterization of Quark-Gluon Plasma (QGP)
- Influence of initial- and final-state effects on particle production

ALICE Physics Papers Timeline

https://alice-publications.web.cern.ch/node/4

A Large Ion Collider Experiment (ALICE)

ALICE upgrade during LS2 (2019-2021)

- Continuous readout → more statistics
- Better vertexing + high efficiency at low p_T with ITS2
- Online reconstruction and data compression

- ALICE capabilities:
 - Extensive PID and low-p_T tracking down to 150 MeV/c
 - GEM-based TPC: 50 kHz Pb-Pb, continuous readout
 - ITS 2: pointing resolution of 35 μm at I GeV/c
 - MFT: forward tracking and vertexing

QCD matter at its extreme

- By colliding different ion species
 - pp & p-Pb & Pb Pb
 - Xe Xe (Run 2)
 - p-O & O O & Ne Ne (finished in 2025)

*for central barrel only (MB)
**expected in 2025

Final state: charged-particle density dN/dn

- Multiplicity measured with charged tracks at mid- and forward- rapidities
 - First paper with Run 3 results: in line with extrapolation from lower energies
- ⇒ First measurement using new MFT detector: trend at forward rapidity compatible with PYTHIA 8

Hard parton interactions with QGP

Jet energy loss and medium response

• Energetic objects traversing a medium induce excitations (a 'response')

Duck via Wikimedia

A duck in water induces a wake

Jet energy loss and medium response

• Energetic objects traversing a medium induce excitations (a 'response')

Duck via Wikimedia, jet wake via PLB 777 (2018) 86

A jet in QGP induces a wake

- Jet lose energy due to interaction with medium
 - iet fragmentation pattern changes
 - medium also modified by jets

Jet quenching via di hadron correlations

- High p_T trigger track used as a jet proxy
- Comparison between central and peripheral collisions medium modification (I_{cp}):
 - Suppression of the away-side peak
 - Stronger towards central collisions more medium

Enhancement of the near-side peak

Semi-inclusive jet energy redistribution

$$I_{\rm AA} \equiv \frac{\Delta_{\rm recoil} (p_{\rm T})_{\rm AA}}{\Delta_{\rm recoil} (p_{\rm T})_{\rm pp}}$$

• First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE

Semi-inclusive jet energy redistribution

- First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE
- Jet yield enhancement at low $p_{\rm T}$ \rightarrow hint of energy recovery in low $p_{\rm T}$ jets?
- Jet yield suppression at $20 < p_{\rm T,jet} < 60~{\rm GeV/}c \rightarrow$ Jet energy loss
- Rising trend with increasing jet $p_{\rm T}$ \rightarrow Interplay of jet quenching and jet production

Semi-inclusive jet energy redistribution

$$I_{\mathrm{AA}} \equiv \frac{\Delta_{\mathrm{recoil}} (p_{\mathrm{T}})_{\mathrm{AA}}}{\Delta_{\mathrm{recoil}} (p_{\mathrm{T}})_{\mathrm{pp}}}$$

- First measurements of semi-inclusive recoil jet yields down to very low $p_{\rm T}$ (7 GeV/c) with ALICE
- The rising trend is qualitatively described by all predications
- \bullet Hybrid model and JEWEL predictions overestimate the suppression at high $p_{\rm T}$
- Hybrid model with wake effect and JEWEL with recoils on capture the yield enhancement at low $p_{\rm T}$
 - → Medium response could be responsible for enhancement

Recoil jet azimuthal modification

$$I_{\mathrm{AA}} \equiv \frac{\Delta_{\mathrm{recoil}} (p_{\mathrm{T}})_{\mathrm{AA}}}{\Delta_{\mathrm{recoil}} (p_{\mathrm{T}})_{\mathrm{pp}}}$$

- Broadening of recoil jets from R = 0.2 to R = 0.4 for $10 < p_{T,chjet} < 20 \text{ GeV/}c$
 - Characteristic of medium response
 - Soft radiation is recovered partially with increasing radius
- All features of distribution reproduced by JEWEL with recoils on ...
 - Observed broadening consistent with medium response

Energy-energy correlator and medium response

• Jet-wake effects expected to change the EEC shape at larger angles

Energy-energy correlator and medium response

Energy-energy correlator and medium response

- \bullet Hints of enhancement at low R_L and suppression at high R_L
- Predictions by theorists suggest to enlarge jet-radius and lower p_T in order to search wake effects \rightarrow accessible with Run 3 data

Improvements of jet analysis with Run 3 data

Fragmentation function with Λ_c^+ -tagged jets

Fragmentation function with Λ_c^+ tagged jets shows much improved sensitivity to hadronisation mechanisms \to hints of softer fragmentation of charm into Λ_c^+ than D⁰

Improvements of jet analysis with Run 3 data

Fragmentation function with Λ_c^+ tagged jets shows much improved sensitivity to hadronisation mechanisms \to hints of softer fragmentation of charm into Λ_c^+ than D⁰

Recoil jet measurements show much better precision with respect to Run 2

QGP (hydrodynamic) expansion

Elliptical flow of light nuclei

- v₂ of anti-³He in Run3 better precision
 - Discriminating power between coalescence and Blast-wave (fit to $\pi/k/p$)
- Flow of hypertriton measured for the first time
 - Compatible with ³He but with large uncertainties

Elliptical flow of heavy flavor

- Prompt D-meson v_2 measured using Run 3 Pb–Pb data sample \rightarrow more precise and differential
 - no significant difference between strange and non-strange D mesons
 - D meson elliptic flow reproduced by the transport(TAMU) model
- Significant different Λ_c^+ v2 compared to D-meson \rightarrow baryon/meson effect?
- A significant J/ ψ v_2 is observed at forward rapidity consistent with the charm quark thermalization

Hadronization

Improved performance for HF particles

Charm production: D mesons

- \bullet First measurement of prompt D_s and D_+ ratio with finer granularity and down zero p_T
 - provide a better baseline for Pb-Pb measurements, tools to investigate the strangeness enhancement in charm sector
 - coalescence model (Catania) gives best description, while others can not describe the data

Charm production: baryons

- •First measurement of the production of Σc (2520) relative to Σc (2455) in pp at $\sqrt{s} = 13.6 \, \text{TeV}$
 - comparable yields for both resonances
 - ullet not described by default PYTHIA ullet running of parameters improve the description

Open beauty production

- •Non-prompt D^0 fraction measured in Run 3: improved precision compared to Run 2 results and extended down to $p_T = 0$
- •Non-prompt Λ_c fraction measured p_T down to 1 GeV/c
- First direct observation of B^0 meson in ALICE, measured down to $p_T = 1$ GeV/c
 - better constraint of the open beauty production

Flavour dependence of QCD showers

Gluon-initiated shower

Broader shower profile
Higher number of emissions

$$P_{g \to gg} = 2C_A \frac{(1 - z(1 - z))^2}{z(1 - z)}$$

Casimir Colour factors

Quark-initiated shower

Narrower shower profile Fewer emissions in the shower

$$P_{q \to qg} = C_F \frac{1 + (1 - z)^2}{z}$$

Different emission properties due to the different amount of colour charge carried by quarks and gluons

$$\frac{C_{\rm A}}{C_{\rm F}} = \frac{9}{4}$$

Flavour dependence of QCD showers

Gluon-initiated shower

Broader shower profile
Higher number of emissions

$$P_{g \to gg} = 2C_A \frac{(1 - z(1 - z))^2}{z(1 - z)}$$

Casimir Colour factors

Different emission properties due to the different amount of colour charge carried by quarks and gluons

$$\frac{C_{\rm A}}{C_{\rm F}} = \frac{9}{4}$$

Quark-initiated shower

Narrower shower profile Fewer emissions in the shower

$$P_{q \to qg} = C_F \frac{1 + (1 - z)^2}{z}$$

Heavy-quark-initiated shower

Suppression of small angle emissions Harder fragmentation

$$P_{Q \to Qg} = C_F \left[\frac{1}{z} - 1 + \frac{z}{2} - \frac{z(1-z)m^2}{k_\perp^2 + z^2 m^2} \right]$$

The dead-cone effect

A suppression of emissions in a cone of size θ = m/E around the direction of the emitter

Sizeable effect for low energy heavy quarks

→ Low energy heavy-flavour jets can maximize sensitivity to mass effects

J. Phys. G17 (1991) 1602

Accessing charm splitting function

- The splitting function for charm quarks has a narrower angular distribution
 - At large angles dominated by Casimir colour effects
 - At small angles a competition between the dead cone and Casimir effects is observed
- Run 3 allows for the investigation of the different evolutions of mass and Casimir effects

Search for QGP limits

Strange hadron production

- Strangeness increases with multiplicity, from pp to Pb-Pb collisions:
 - hierarchy of increasing trend with strangeness content
- Several approaches try to describe strangeness hadronization in small systems
 - pQCD inspired models need extra mechanisms
- First Ω yield measured in pp collisions at \sqrt{s} = 900 GeV at the LHC
 - comparison with measurements at different collision energies for pp collisions \sqrt{s} = 900, 7, 13.6 GeV
 - unprecedented multiplicity differential study with Run 3 data
 - full sample will allow to extend the multiplicity reach

ALI-PREL-559079

Strangeness enhancement origin search

- Majority of the total production is from UE contribution
- Steepness of the strangeness increase is quite similar between jets and UE
 - Models can't reproduce data well

Search for jet quenching in small systems

- Using particle correlation methods to study associated particles behavior as a function of (transverse) multiplicity
 - No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions

Search for jet quenching in small systems

- Using particle correlation methods to study associated particles behavior as a function of (transverse) multiplicity
 - No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions
 - Peak width become narrower in HM events for low pt associated particles

Search for jet quenching in small systems

entral China Normal University

- Using particle correlation methods to study associated particles behavior as a function of (transverse) multiplicity
 - No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions
- Peak width become narrower in HM events for low p_T associated particles
- Azimuthal broadening in HM events observed for recoiling jets with high pt trigger particles

 $\Delta \varphi$

Fresh news: chasing the small size-limit of QGP

- Collective-like effects present in high multiplicity pp and p-Pb collisions
- But: No jet quenching observed in p-Pb (d-Au) at high multiplicity
- Open questions:
 - → How plasma-like properties emerge in QCD?
 - → What is the smallest droplet of QGP?

Fresh news: chasing the small size-limit of QGP

Collective-like effects present in high multiplicity pp and p-Pb collisions

July 2025:

• But: No jet quenching observed in p-Pb (d-Au) at high multiplicity

O-O, Ne-Ne, p-O data taking

- Open questions:
 - → How plasma-like properties emerge in QCD?
 - → What is the smallest droplet of QGP?

Fresh news: chasing the small size-limit of QGP

Collective-like effects present in high multiplicity pp and p-Pb collisions

July 2025:

• But: No jet quenching observed in p-Pb (d-Au) at high multiplicity

O-O, Ne-Ne, p-O data taking

Open questions:

How plasma-like properties emerge in QCD? What is the smallest droplet of Q' **ALICE Performance ALICE Performance** \rightarrow Data ($K_S^0 \rightarrow \pi^+ \pi^-$) O - O, $\sqrt{s_{NN}} = 5.36 \text{ TeV}$, Minimum bias 2500 — O-O $\sqrt{s_{NN}}$ = 5.36 TeV, 0-100% — Fit $1.4 \stackrel{\vdash}{\vdash} D^0 \rightarrow K^-\pi^+ + c. c.$ |y| < 0.5; $|\eta_{\text{daughters}}| < 0.8$ ---- Background **D**⁰ in **O**-**O** $-1.0 < p_{_{\rm T}} < 1.1 \text{ GeV/}c$ $0 < p_T < 24 \text{ GeV}/c$ 16 0, $\rho_{m,2}(x, y, z)$ - PGCM ²⁰Ne, $\rho_{m,2}(x, y, z)$ K_S^0 in O-O 1500 8.0 1000 0.6 0.4 500 0.2 0.0 0.5 0.45 1.80 1.85 1.90 1.95 $(\pi^+ \pi^-)$ inv. mass (GeV/c^2) PRL 135 (2025) 012302 ALI-PERF-608619 $M_{\rm K\pi}({\rm GeV}/c^2)$

ALICE: what's next?

Evolution towards higher pointing resolution and larger effective acceptance

Maintain and enhance ALICE's unique capabilities in particle identification

Towards future: ALICE 2 (beyond Run 3)

FoCal-H FoCal-E

ITS3 & FoCal

- Specific upgrades in LS3 (2026-29)
- TDRs approved in March 2024
- Moving towards "production" phase

FoCal TDR: CERN-LHCC-2024-004

Towards future: ALICE 3 (beyond Run 4)

ALICE 3: Major upgrade in LS4 (2034-35)

- → Next-generation heavy-ion experiment First ideas at Heavy-Ion town meeting in 2018 (arXiv:1902.01211)
- → Letter of Intent: Review by the LHCC in March 2022 (arXiv:2211.02491)
- → Scoping Document:
 Review just completed (CERN-LHCC-2025-002)

Moving towards "comprehensive R&D" phase

Summary

 The ALICE experiment is specifically designed to study every phase of heavy-ion collisions

• This presentation provides an overview of selected recent results from the ALICE experiments. The results showcased do not represent the full scope of measurements!

• The complete data and detailed studies from Run I and Run 2 (2009–2018) are documented in...

• The journey continues with ongoing research in Run 3 and beyond...

Summary

 The ALICE experiment is specifically designed to study every phase of heavy-ion collisions

 This presentation provides an overview of selected recent results from the ALICE experiments. The results showcased do not represent the full scope of measurements!

• The complete data and detailed studies from Run I and Run 2 (2009–2018) are documented in...

• The journey continues with ongoing research in Run 3 and beyond...

Stay tuned! Thanks for your attention!

Backup

