16th France-China Particle Physics Network/Laboratory workshop

Vector meson spin alignment measurements with ALICE

Xiaozhi Bai (白晓智)

University of Science and Technology of China

Qingdao, July 24, 2024

Motivation (some 50 years ago)

"It would be **intriguing** to explore new phenomena by distributing high energy or high nuclear matter over a relatively large volume., In this way, one could possibly create abnormal states of nuclear matter."

Introduction to heavy-ion collisions

Initial stages

quark-gluon plasma (QGP) fluid dynamic expansion

Final state: hadron scattering

Introduction to heavy-ion collisions

- In non-central heavy-ion collisions, short-lived magnetic fields (B) and very strong orbital momentum (L) are expected to be produced
- The magnetic fields and orbital momentum can influence the global polarization

Strong magnetic field and orbital momentum

Christakoglu et al., EPJC (2021) **81**: 717

F. Becattini et al., PRC 77 (2008)

- The most intense magnetic field in nature [STAR, Nature 548, 62 (2017)]
- Angular momentum strongly depends on impact parameter (b)

Vector meson spin alignment

STAR, Nature 614 244 (2023)

- ➤ Vector meson spin alignment measures field square, which corresponds to the local correlation and fluctuation of the strong force field
- The vector field is induced during the hadronization process
- This mechanism will open a new window for the strong force field study once it is confirmed!

X.-L. Sheng, L. Oliva, Z.-T Liang et al, PRL131 (2023)4,042304

X.-L. Sheng, L. Oliva, Z.-T Liang et al, PRD109 (2024)3, 036004

Introduction to spin alignment measurements

Polarization axis:

- Helicity (HX): direction of vector meson in the collision center of mass frame
- ➤ Collins-Soper (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame
- > Event Plane based frame (EP): axis orthogonal to the reaction plane in the collision center of mass frame

The vector mesons polarization measurements

Quarkonia measurements:

$$W(\cos heta,\phi) \propto rac{1}{3+\lambda_ heta} \cdot \left(1+\lambda_ heta\cos^2 heta+\cdots
ight)$$

$$W(\cos heta)\propto (1-
ho_{00})+(3
ho_{00}-1)\cos^2 heta$$

$$\lambda_{ heta} = ext{ polarization parameter} \ \lambda_{ heta} = 0 ext{ no spin alignment}$$

$$\lambda_{ heta} = rac{1-3
ho_{00}}{1+
ho_{00}} \quad egin{cases} \lambda_{ heta} > 0
ightarrow
ho_{00} < 1/3 \ \lambda_{ heta} < 0
ightarrow
ho_{00} > 1/3 \end{cases}$$

- **pp collisions**: Important to constrain quarkonium production mechanisms in hadronic collisions
- AA collisions: Polarization measurements gives access to different time scales and mechanisms, like the early-produced magnetic field, angular momentum, and hadronization mechanisms.

Polarization measurements with ALICE detector

- ➤ Time Projection Chamber
 Tracking, particle identification
- ➤ Inner Tracking System

 Tracking, vertex reconstruction,
 event plane determination
- > V0 Detector

Centrality determination, triggering, event plane determination

> Muon spectrometer

Trigger and tracking for muons

K^{*0} and ϕ spin alignment vs. centrality

- \triangleright Maximum deviation of ρ_{00} in semicentral collisions and low p_T
- Problem Deviation w.r.t 1/3 are 2.6σ and 1.9σ for K^{*0} and ϕ , respectively

ALICE, PRL 125(2020) 012301

K^{*0} and ϕ spin alignment Vs $p_{\rm T}$

- $\rho_{00} < 1/3$ for K^{*0} and ϕ at low p_T , ρ_{00} consistent with 1/3 at high p_T
- $\triangleright \rho_{00}$ for K_s^0 (spin=0) consistent with 1/3

ALICE, PRL 125(2020) 012301

J/ψ spin alignment vs centrality

- First measurement of quarkonium spin alignment with respect to the event plane
- \triangleright The significance of the spin alignment reaches $\sim 3.9\sigma$ at the semi-central collisions
- ➤ Interpretation of results requires inputs from theoretical models

J/ψ spin alignment vs p_T

- ightharpoonup Significant J/ ψ spin alignment observed at low p_{T} are they from (re)generated contribution?
- $ightharpoonup J/\psi$ (re)generation from uncorrelated charms quarks contributions are found to be the dominate production mechanism at low p_T in the LHC energies

D^{*+} spin alignment p_T dependence

- ho 0 10%: ρ_{00} compatible with 1/3, 30 50%: $\rho_{00} > 1/3$ at high p_T
- $\rho_{00} < 1/3$ quark recombination at low $p_{\rm T}$ while $\rho_{00} > 1/3$ quark fragmentation at high $p_{\rm T}$
- > Theory guidance needed!

D*+ spin alignment in pp collisions

ALICE, Phys. Lett. B 846 (2023) 137920

- $\rho_{00} = \frac{1}{3}$ for prompt \mathbf{D}^{*+} , ρ_{00} larger than $\frac{1}{3}$ for non-prompt \mathbf{D}^{*+} , due to the helicity conservation in weak decays
- > New measurement in pp collisions provides an important baseline for Pb-Pb collisions

ALICE @ LHC

Major upgrades installed in 2019-2021

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	2022-2025	2026-2028	2029-2032	2033-2034	2035-2041

ALICE in Run 3

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	2022-2025	2026-2028	2029-2032	2033-2034	2035-2041

Continues Readout in Run 3

LHC LS2	LHC RUN 3	LHC LS3	LHC RUN 4	LHC LS4	LHC RUN 5 and RUN 6
2019-2021	2022-2025	2026-2028	2029-2032	2033-2034	2035-2041

Statistics collected in LHC Run 3 (so far)

- Record all the minimum bias (MB) events during the data taken
- Collected approx. 24B and 2000B MB events in Pb-Pb and pp collisions, respectively

Charmonia polarization in pp collisions

New Preliminary

- \triangleright The Run 3 statistics allow for the measurement of J/ ψ polarization at midrapidity
- \triangleright The measurement of J/ ψ polarization in Pb-Pb collisions is ongoing

Summary and outlook

▶ Pb−Pb collisions

The significant J/ ψ spin alignment ($\sim 3.9\sigma$) observed w.r.t the reaction plane The measured ρ_{00} of light flavor vector meson K*⁰ and ϕ are less than 1/3 at low $p_{\rm T}$

Prospect of Run 3

New and more precise measurements can be expected – stay tune with Run 3

Thanks