Physics analysis activities at ALICE-CIAE group

Mingrui Zhao 24-07-2025

China Institute of Atomic Energy

Overview

W-boson production in Pb-Pb collisions

Non-prompt D-meson production

Anisotropic flow measurements

ALICE-CIAE team

- Team leader:
 - Xiaomei Li
- Deputy:
 - Mingrui Zhao
- Ph.D Students:
 - Shihai Jia, Zhiyong Lu, Shoulong Lin, Peiyu Li, Shangtai Jin
- Master Students:
 - Yongxi Du

W-boson production

Mingrui Zhao (supervised by Xiaoming Zhang and Nicole Bastid) Collaboration with:

<u>Guillaume Taillepied</u>, <u>Nicole Bastid</u>, <u>Xavier Bernard Lopez</u> from Clermont-Ferrand University

First measurement of W production at LHC energy in PbPb at small-x

- W bosons: sensitive probes of the nuclear modifications of the Partonic Distribution Functions:
 - Production well described by perturbative QCD and electroweak theory
 - Produced in the hard processes, during the initial stages of the collision
 - If studied in their leptonic decay: insensitive to the strongly-interacting medium

First measurement of W production at LHC energy in PbPb at small-x

• W extraction: Fit of the single muons p_T distribution:

$$f(p_{\mathrm{T}}) = N_{\mathrm{HF}} \cdot f_{\mathrm{HF}}(p_{\mathrm{T}}) + N_{\mu \leftarrow W} \cdot (f_{\mu \leftarrow W}(p_{\mathrm{T}}) + R \cdot f_{\mu \leftarrow Z}(p_{\mathrm{T}}))$$

- $f_{\rm X}(p_{\rm T})$: MC templates (FONLL, POWHEG),
- N_X: free parameters,
- R: ratio of the Z to W cross sections from POWHEG
- Raw yield corrected for the acceptance × efficiency of the detector

W-boson production

First measurement of W production at LHC energy in PbPb at small-x

- Models with free-PDF overestimate the cross section while models including nuclear effects agree with the measurement very well
- Suggests visible nuclear effects

- HG-PYTHIA: includes biases from event selection and geometry that cause suppression in peripheral collisions
- Neutron-skin effect affects the production of W⁺
 and W⁻ in different directions

Non-prompt D-meson production

Tao Jiang (supervised by Xinye Peng),
Collaboration with
Stefano Politano, Francesco Prino, Binti Sharma
From Turin University and University of Jammu

Non-prompt D-meson production

- Heavy-flavour production cross section in hadronic collisions: standard approach based on factorisation theorem
- Relative abundances and spectra of different hadron species sensitive to HF quark hadronization

Non-prompt D-meson production

- Measured the transverse momentum differential production cross sections of nonprompt D mesons in pp collisions, covering D⁰, D⁺, and D_s⁺ mesons.
- Achieved the first
 measurements
 of D⁺ and D_s⁺ mesons at this
 energy, with
 improved p_T resolution
 for D⁰ mesons.

Flow measurement in pp, p-Pb, Xe-Xe, Pb-Pb

Mingrui Zhao, Zhiyong Lu (supervised by You Zhou) From Copenhagen University

Flow measurement in pp, p-Pb and Pb-Pb

 $\bullet \pi^{=} \bullet p(\overline{p})$

6

 ${}^{\bullet}\Lambda(\overline{\Lambda})$

 $p_{_{\pm}} (\text{GeV}/c)$

p ∘ → ← Pb

dilute system, few interactions

dense system many interactions

high multiplicity

low multiplicity

ALICE Preliminary

 $N_{cb} > 50$

p-Pb. $\sqrt{s_{NIN}} = 5.02 \text{ TeV}$

Low Multiplicity Template: N_{cb}<15

 $p \rightarrow \leftarrow o p$

[Nature Phys. 13 (2017)]

Discovery of the last decade:

QGP is found almost everywhere from large system (PbPb) to small system (pp, pPb)

PID Flow

Strangeness enhancement

Flow measurement in pp, p–Pb and Pb–Pb

- Measured the $v_n\{2\}$ and $c_2\{m\}$ (with the multi-particle cumulants (Q-cumulants) method) in pp, pPb and PbPb collisions
- Performed detailed correction including efficiency/non-uniform acceptance etc.
- Provides constrain on models

Flow-mean $p_{\rm T}$ correlations

First measurements in small system at low $p_{\rm T}$

- Initial size-shape correlation, sensitive to CGC effects
- Models fails to describe the data (with and without initial momentum anisotropy (IMA)) from CGC

Flow in Xe–Xe collisions

[arXiv:2409.04343, under PLB review]

$$\beta_2 = 0 \quad \gamma = 0^\circ$$

$$\beta_2 = 0 \quad \gamma = 0^{\circ} \qquad \beta_2 = 0.4 \quad \gamma = 0^{\circ} \qquad \beta_2 = 0.2 \quad \gamma = 30^{\circ}$$

$$\beta_2 = 0.2 \quad \gamma = 1$$

Nucleon density described by Woods-Saxon profile

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{[r-R(\theta,\phi)]/a_0}}$$

$$R(\theta, \phi) = R_0(1 + \frac{\beta_2}{2}[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}])$$

- β_2 : overall quadrupole deformation
- *γ*: triaxial parameter

Central collision (impact parameter $b \sim 0$)

[arXiv:2409.04343, under PLB review]

- v₂{2}(Xe-Xe/Pb-Pb) starts from 1.5 in the most central collisions, then goes near 0.9 in midcentral collisions
- Central collision:
 deformation effect
 dominates, provides
 powerful constrain on Xe
 deformation

$$\beta_2 = 0$$
 $\gamma = 0^\circ$ $\beta_2 = 0.4$ $\gamma = 0^\circ$

Flow in Pb-Pb collisions at Run 3

- First flow results from Run 3.
- Resolved the long-standing inconsistency between Run 2 and Run 3.
- Demonstrated the power of ALICE in flow measurement.

Summary

- Active in Physics Analysis
 - Leading and contributing to key analyses over the past few years.
- Broad Physics Coverage
 - Working on multiple topics, ensuring diverse expertise.
- Strong Collaborations
 - Partnering with institutes and universities globally.
- Future Goals
 - Expanding research scope and strengthening collaborations.

Thank you for your attention