

Progress on the Hardware Development for the Timing-SDHCAL

Weihao Wu on behalf of SDHCAL Group

2025-07-24

SDHCAL Main Characteristics

- SDHCAL is a high-granularity PFA (Particle Flow Algorithm) calorimeter
- Sampling calorimeter: Stainless Steel + Glass Resistive Plate Chamber
- 1m³ prototype has been built and tested
 - 48 layers ($^{\sim}6\lambda_I$), 1 cm² granularity, 500000 channels

- Detector: GRPC operating in avalanche mode
- Embedded electronics:
 - PCB Top: HARDROC ASIC and related components
 - Semi-Digital Readout: 2bits 3 thresholds (110 fC, 5pC, 15pC)
 - PCB Bottom: 1x1 cm² pads

5D Calorimeter: Including Precision Time Why Precision Time

- 1. Precise time helps identify delayed neutron-induced showers and improve the energy reconstruction.
- 2. Precise time helps to separate nearby showers and reduce the confusion for a better PFA application.

Example 1: Pi-(20 GeV), K-(10 GeV) separated by 15 cm in the SDHCAL detector(from Prof. Yong Liu @IHEP)

5D Calorimeter: Including Precision Time Why Precision Time

- 1. Precise time helps identify delayed neutron-induced showers and improve the energy reconstruction.
- 2. Precise time helps to separate nearby showers and reduce the confusion for a better PFA application.

Example 2: Simulated purity and reconstruction efficiency for a 10 GeV neutral particle in the presence of a nearby 30 GeV charged particle in the SDHCAL

5D Calorimeter: Including Precision Time Approximation

- ➤ Chambers: GRPC -> MultiGap GRPC
 - > Improve the intrinsic timing of the calorimeter
 - Time resolution of better than 100 ps was obtained with 5-gap RPC by Tsinghua group
 - ➤ 3-gap MRPC detectors of 50 cm x 33 cm has been built and tested by Lyon group
 - ➤ 4-gap and 5-gap MRPC detectors have also been built and will be tested soon.
- ➤ Electronics: new front-end boards with timing ASICs
 - Timing ASIC: a fast preamplifier, precise discriminator and excellent TDC
 - High channel density, low power consumption

High Precision Time Measurement ASIC

- ➤ Support high-precision timing ASICs:
 - > ALTIROC, FastIC, PETIROC, TOFPET2, NINO, HRFlexToT, FlexToT et al.
- ➤ "Present" baseline: PETIROC
 - ➤ Only for exploring the MRPC performance and conception validation of the detector prototype
- ➤ Medium/long term possible option: LiROC+PicoTDC

· 32 channels

- Time resolution < 50ps

- Pros: On-chip TDC, QDC

- Cons: deadtime

- Power consumption: ~6mW/ch

- Developed at CNRS-OMEGA

- 64 channels

- FWHM < 20ps

- 64 channels

- Timing res < 10 ps

Front-end Board (FEB)

- > 1st-version of small FEB prototype
 - > Cell size: 1cm x 1cm
 - > Blind and buried vias
 - > SMAs to inject signals
 - > Jump cables for power & digital signals
 - Crosstalk issue in injection tests
- ➤ 2nd-version of small FEB prototype
 - ➤ On-board power rails
 - Crosstalk issue fixed
 - ➤ Injection test
 - Commissioning test with MRPCs

Jumper connector

DAQ Development

FEB

Petiroc

Configuration

Data

Flow

Configuration

of Si5345

A readout system has been developed based on Xilinx ZCU102 board.

ZYNQ

AXI-Lite

PL Firmware

Registers &

Configuration

Logic

AXI-Stream

IP core

Data

FIFO

DMA

Ethernet

Data Flow

LWIP

Applications

- > Qt5 & PyQt
- > Main functions:
 - > Slow control
 - > Data transmission
 - Calibration
- Multi-threading

AXI-Full

Control

Front-end Board (FEB) – Injection Test

200702 Evaluation Board	
features	description
waveform	Negative pulses
frequency	20 kHz
duty	95 %
Amp	30 mVpp
rising edge	1 μs
falling edge	2 ns

Time resolution across different channels: σ =33.06±0.54 ps

Time resolution in multi-ch : $\sigma = 43.37 \pm 2.08 \text{ ps}$

Front-end Board (FEB) — Cosmic Ray Test SITUPA

- Commissioning test with MRPCs
- Scintillator signal for specific-channel injection.
- Test time difference between scintillator and MRPC signals.

Metal pads on the bottom

Statistical results of time differences between MRPC and scintillator signals

New larger FEB Development

- > To match the MRPC size, larger FEB board need to be developed.
- ➤ Due to the limitation of PCB manufacturing, two versions of the FEB need to be designed, using high-density, low-profile connectors between them.

New larger FEB Development

1st-version of large FEB-A prototype has been designed and manufactured.

Size: 32cm x 50 cm

Cell size: 2cm x 2cm

Buried and laser vias

> FPGA on board

Low-profile FCC connector

Functional block diagram

Blind and buried vias [1] TOP (T) [2] GND02 (**2**) [3] ART03 (3 [4] Power04 (4 [5] GND05 (5) [6] ART06 (6 [7] GND07 ([8] Bottom (B) PCB Stack-up

0.6 m Test will be carried out soon

Summary

- ➤ The SDHCAL is being upgraded into a Timing-SDHCAL, as precise timing is highly valuable.
- Two versions of small front-end boards (FEBs) based on the PETIROC ASIC has been developed and tested.
 - ➤ Injection tests show timing resolution < 50 ps
 - Commissioning tests have been performed with MRPC detectors
- > A DAQ system based on Zynq FPGA and PyQT5 has been developed.
- > A new larger-size of FEB has been developed and will be tested soon.

T H A N K Y O U

Thank you for your attention!

饮 水 思 源 · 爱 国 荣 校