COMET Track Finding and Fitting

The 16th France-China Particule Physics Network/Laboratory Workshop (FCPPN/L 2025)

Wilfrid da Silva¹

¹ Sorbonne University/IN2P3, LPNHE Paris, France

COMET@JPARC Facility (KEK/JAEA)

• COMET (Coherent Muon to Electron Transition)

- Masaharu Aoki (spokesperson), Osaka University
- 6 Chinese institutes :
 - Institute of High Energy Physics (IHEP), Beijing
 - Institute of Modern Physics (IMP), Lanzhou
 - Nanjing University, Nanjing
 Dating University, Paiiing
 - Peking University, Beijing
 - Zhengzhou University
 - Sun Yat-sen University, Guangzhou
- 5 French institutes
 - Laboratory of Nuclear and High Energy Physics (LPNHE), Paris,
 - Laboratoire de Physique Corpusculaire, Caen (LPC-Caen)
 - LPC, Clermont-Ferrand.
 - Institut de Physique des 2 Infinis de Lyon (IP2I),
 - CC-IN2P3, Lyon,

COMET Track Finding and Fitting (FCPPN Team)

- Haibo LI (IHEP)
- Ye YUAN (IHEP) (co-spokesperson)
- Yao ZHANG (IHEP)
- Zhaoke ZHANG (IHEP)
- Wilfrid da SILVA (LPNHE-Paris)
- Luigi DELBUONO (LPNHE-Paris)
- Patrice LEBRUN (IP2I-Lyon)
- Jean-Claude ANGELIQUE (LPC-Caen)

Wilfrid da Silva

Principal Goal of COMET : search for the $\mu^- N \to e^- N$ process.

coherent neutrinoless conversion of muons to electrons ($\mu-e$ conversion)

➤ What's happen with a muon in atom?

nuclear muon capture

 $\mu^{-} + (A, Z) \rightarrow V_{\mu} + (A, Z - 1)$

Aim:

- Such extremely rare processes experimentally are non-detectable over the world.
- □ An observation of the conversion μ→ e would mean manifestation of NP-Exotics beyond the SM, and hence the results of the COMET could be of fundamental importance.

Left (right) : photonic (four-fermion/contact) interaction.

The shaded circles denote a BSM flavor-violating interaction.

Violates the conservation of individual lepton flavours

3/15

Other experiences in the field : past, present and future

Current limits for CLFV $B(\mu^+ \to e^+ \gamma)$ < 1.5 10⁻¹³ (90 % C.L) (2025 MEG II experiment)

1993

 4.3×10^{-12}

DeeMe (SiC)

PSI/MEG	2016	4.2 × 10 ⁻¹³		
PSI MEG II		4 × 10 ⁻¹⁴		
PSI/SINDRUM	191	38 1.0 × 10 ⁻¹²	L	

PSI/SINDRUM	1988	1.0 × 10 ⁻¹²
PSI/PSI/Mu3e		10 ⁻¹⁵ - 10 ⁻¹⁶

4.6×10^{-11}	Pb	1996			
7×10^{-13}	Au		2006		
Experiment (material)	future sensitivi	ty	year		
Mu2e (AI)	3×10^{-17}		~ 20xx		
COMET (AI) - Phase I (II)	10-15 (10-1	7)	~ 20y	y(zz)	

Ti

- Mu2e, the Coherent Muon to Electron Transition Fermilab experiment in many aspects is very semilar to COMET.
 - The projected sensitivity for :
 - Mu2e after 690 days of operation is 3×10^{-17} at 90% CL.
 - COMET Phase-II is 2.6×10^{-17} at 90% CL.

Minimal extension of the SM: Dirac masses for neutrinos are incorporated. Leptonic mixings are possible including CLFV.

CLFV processes such as radiative decays $(\ell_i o \ell_i \gamma)$ yield extremely small rates

$${\rm BR}(\mu \to {\rm e}\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{j=1}^3 {\it U}_{ej} U_{\mu j}^* \frac{m_{\nu_j}^2}{M_W^2} \right|^2 \simeq 10^{-54}$$

Experimental Aspects of $\mu - e$ conversion

Energy of the signal electron :
$$E_{\mu e} = m_{\mu} - B_{\mu} - E_{\text{recoil}}$$

(B_{μ} : muon binding energy, E_{recoil} nuclear recoil energy) = 104.97 MeV (aluminium)

- Mono-energetic electron ⇒ simple signature
- Energy e⁻ ~ 105 MeV
 ⇒ well above the muon
 decay spectrum
 end-point
 energy ~ 52.8 MeV.
- Long lifetime (864 ns)
 ⇒ backgrounds beam
 flash can be eliminated
 by waiting
- Could improve sensitivity by using a high muon rate

Momentum distributions for three different beam momenta and polarities: (i) \$3 MeV/c negative muons, optimized for μ^- stops, (ii) $63 \, \mathrm{MeV/c}$ negative pions, optimized for π^- stops, and (iii) $48 \, \mathrm{MeV/c}$ positive muons, optimized for μ^+ stops. The $63 \, \mathrm{MeV/c}$ data were normalized to the same measuring time. The measurement with the stopped μ^- beam is compared with GEANT simulations of decay in orbit and μe conversion.

COMET will be conducted in 3 phases:

- Phase- α : In Feb-March 2022
 - Run at low intensity (200 W) without pion capture solenoid
- Phase-I: Should start end 2026 Physics running (2-3 years)
 - Investigate the beam and backgrounds
 - Branching ratio limit B($\mu^- N \rightarrow e^- N$):7 × 10⁻¹⁵ at 90% confidence level
- Phase-II:
 - Use the information gained in Phase-I
 - Branching ratio limit B($\mu^- N \to e^- N$) : 2.6 imes 10⁻¹⁷ at 90% CL

Some COMET requirements (need of lot of muons)

- Good J-PARC high-power proton beam
 - 3.2 kW (Phase I), 56 kW (Phase II)
- Good Efficient pion collection system
 - Surrounding the proton target: 5 T superconducting solenoid.
- Good Cosmic Ray Veto (CRV)
 - Georgia, France, IHEP, · · ·
 - Has to identify cosmic-ray muons with an average inefficiency that is lower than 10⁻⁴
 - The active veto system covering the CyDet is made of scintillator-based detectors/ glass resistive plate chambers (GRPC)
- Good track reconstruction in full stereo Central Drift Chamber

$\mathsf{Protons} \Longrightarrow \mathsf{pions} \Longrightarrow \mathsf{muons} \Longrightarrow \mathsf{electron}$

COMET Cylindrical Detector system (CyDet)

The Cylindrical Detector system (CyDet) is specially designed for Phase-I. Consists of:

- Cylindrical trigger hodoscope (CTH):
 - Two layers: plastic scintillator for trigger time and Cerenkov counter for PID.
 - · Finemesh PMT readout
 - 4-fold coincidence trigger
- Cylindrical drift chamber (CDC):
 - 20 stereo layers: z information with few layers' hits.
 - Helium based gas: minimize multiple scattering.
 - Large inner bore: to avoid beam flash and DIO electrons.
 - Momentum resolution: 200 keV/c (for p=105 MeV/c)
- Stopping target
 - Aluminum target with 17 disks
 - 100-mm radius, 0.2-mm thickness, 50-mm spacing.

Muon Stopping Target

Muon Stopping Target

CDC endpl

Cryostat

Momentum distributions for the reconstructed μ -e conversion signals and reconstructed DIO events.

CDC

Stopping Target

hodoscope

CDC outer wall

COMET Track finding in full stereo Central Drift Chamber (CDC)

@IHEP team (Tianyu XING, Yao ZHANG, Ye YUAN, ...)

Challenges of tracking algorithm of CDC:

- · All stereo layers which can't provide information in z axis directly
- · No vertex constraint
- No seed from sub-detector could be used
- · Tracks with low transverse momentum is circle inside detector
- · Overlapping between tracks from different turns

Major problem of tracking algorithm of CDC

- · Calculate track parameters of seed
- Distinguish tracks from different turns
 High momentum tail of reconstructed tracks

- · Random noise hits added to signal samples
- Assuming Hough algorithm has been developed
- . RANSAC track finder (RTF) and track fitting are developed and tested
- · Pre-tracking and quality cut are still developing

Random Sample Consensus (RANSAC):

- 1. Select a random subset of the original data (5/6 hits combination)
- A model is fitted to the data set (helix fitting)
 Points that fit the model well are considered as part of the set (pick-up signal hits)
- 4. The model is reasonably good if many points have been classified (track candidate)
- 5. The model may be improved by reestimating it using all sets (track fitting with genfit)

Track finding

- With ~30% random noise hits:
- For double turn events:
- Peak searching efficiency: 98.9%
 Resolution:
- $\sigma_x = 0.35 \, mm$, $\sigma_y = 0.35 mm$, $\sigma_z = 5.0 \, mm$
- σ_{px} = 0.81 MeV, σ_{py} = 0.81 MeV, σ_{pz} = 5.7 MeV
 For double turn events:
 - · Peak searching efficiency: 89.3%
 - Resolution:
 - $\sigma_x = 0.37 \, mm, \sigma_y = 0.35 mm, \sigma_z = 6.8 \, mm$
 - σ_{nv} = 2.5 MeV, σ_{nv} = 2.4 MeV, σ_{nv} = 11.8 MeV
- · Almost same worse resolution

Wilfrid da Silva

COMET Track fitting in full stereo Central Drift Chamber

⇒ Good resolution, single and double turn fitting resolution still under study

Classical "Hough Transform" for the Track finding in stereo drift chamber and link to Apollonius De Pergas's Problem

Radius r_i are well defined in a Axial Drift Chamber (radius = axial drift distance) but not in a Stereo Drift Chamber

⇒ Not bad! but to many wrong answers! Can we do better! i.e estimate all helix parameters

Stereo Drift Distance and Apollonius De Pergas's Problem

Just rewrite the stereo drift distance standard equation for an helix in the Apollonius Formalism :

\implies Can now estimate all helix parameters $(x_c, y_c, R, z_0, \lambda)$ from data

Hit Finding Approach

- Apollonius' problem is extended to Full Stereo Drift Chamber
- The method and the mathematical description are in the ArXiv https://arxiv.org/abs-2401.04576

⇒ very good results on perfect track helix toy model

Aim: develop/test a COMET track finding software package using Apollonius's Problem on realistic COMET simulation with Julia language

realistic COMET simulation given/produced by IHEP team

Tracking Apollonius Software

- Deal: Search for tracks and hits in a (very) noisy environment with the lowest possible processing time and using common computing hardware like GPUs
 Improve efficiency of other methods.
- Written in Julia, a high-level, high-performance dynamic language for scientific and technical computing.
 - Allows easy use of GPU with the availability of powerful math packages.
- Julia performance is identical to C/C++
- Two Main Packages Used:
 - CUDA.il (Nvidia)
 - IntervalArithmetic.il
- Jupyter (JuliaPythonR) notebook is used to analyse output and for coding development (testing).
- Gitlab: Tracking Apollonius Projects
- Apptainer (Singularity)
 - □ tested successfully with a container having alma linux 9, iRods client, julia and all julia packages needed by the project installed. Its Size is ~1.8 GB (mainly occupied by CUDA)

- Helix parameters given by Hough Transform
- Hough Transform based on arithmetic Interval

Using Divide and Conguer algorithm

13/15

- GPU straigth forward implementation with Julia
- Run on CC-IN2P3 GPU

Some preliminary results (\simeq 80 signal hits and \simeq 2500 noise hits (50 % CDC occupency)

- Apolonius's algorithm is currently tested
- Very good behavior at high CDC occupency 50 % (very similar result as standart algorithm at low CDC occupency 5-10 %)
- Currently including correction due to non uniform COMET magnetic field
- Currently Considering the "Hough transform" output (noise or signal hits (helix parameters, drift distance sign and turn number) as input of denoising diffusion neural net.

Summary and Prospects

- COMET Phase-I (commissioning) should start end 2026.
- Apollonius's algorithm is currently tested (show very good result at high CDC occupency)
- Julia programming language can make algorithm development easier (GPU, · · ·)
- Consider correction due to non uniform COMET magnetic field
- Consider using denoising diffusion neural net.

Thanks you very much