

Introduction to CEPCSW and performance study

Gang LI

Outline

- CEPC
- CEPC software & detectors
- Generator samples
- Some useful information

Attendances of IHEP

Joao Costa co-convener of detector group

Mingshui Chen physics performance

Jianchun Wang

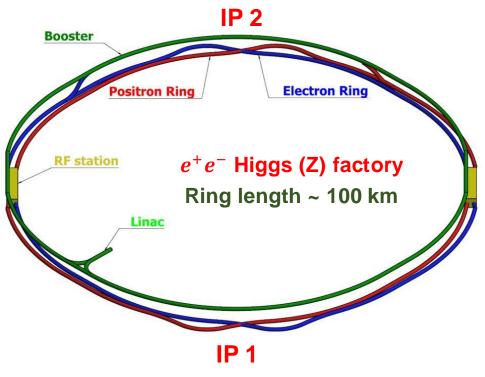
co-convener of detector group

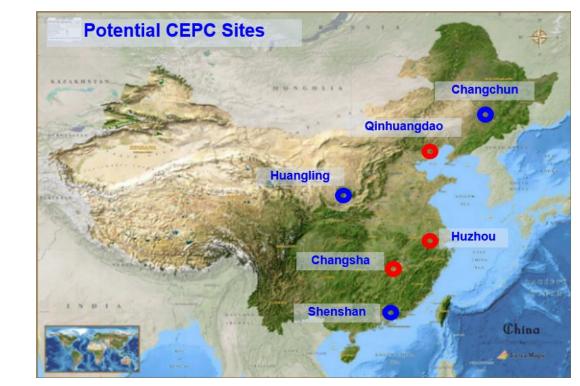
Yong Liu (crystal) ECal

Huirong Qi (pixelated) TPC

Manqi Ruan White papers

Gang Li software, physics generators, tracker




General introduction

Circular Electron Positron Collider (CEPC)

- CEPC is an e⁺e⁻ Higgs factory producing Higgs / W / Z bosons and top quarks, aims at discovering new physics beyond the Standard Model
- Proposed in 2012 right after the Higgs discovery
- □ Proposed to commence construction in ~2027 and start operation in 2030s.
- **Upgrade:** Super pp Collider (SppC) of $\sqrt{s} \sim 100$ TeV in the future.

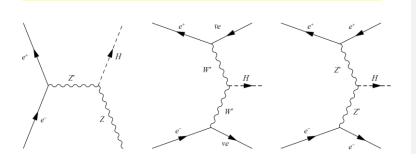
CEPC Physics Program

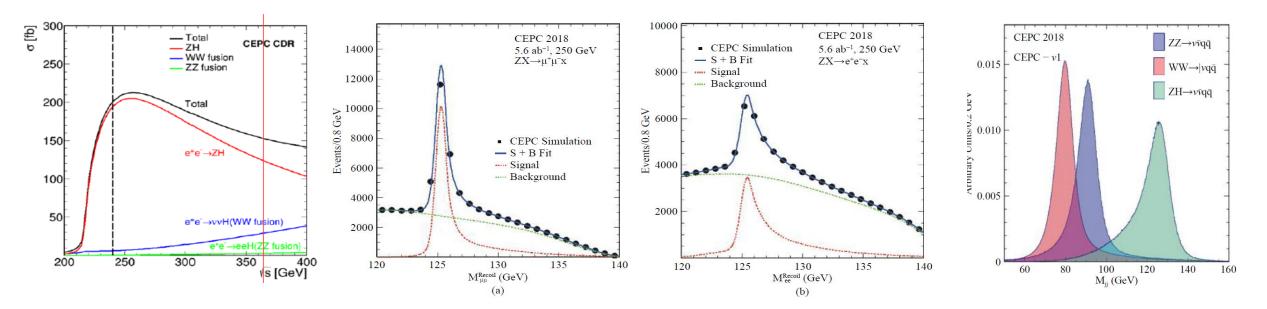
	1			
-		Z R		FA \
2				-Insiny
	No.	TON	CUM	/
		/		

CEPC Operation mode		ZH	Z	W⁺W⁻	ttbar
\sqrt{s} [GeV]		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	5.6	16	2.6	-
Event yields [2 IPs]		1×10 ⁶	7 ×10 ¹¹	2×10 ⁷	-
Run time [years]		10	2	1	5
Latest	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
TDR	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	20	96	7	1
(50MW)	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

Systematically examine the SM and search for new physics beyond SM

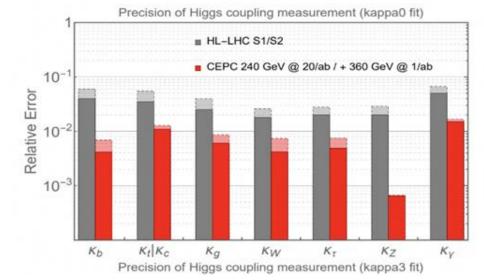
Higgs&EW, QCD, Flavor, new hadron states, new phenomena, ...

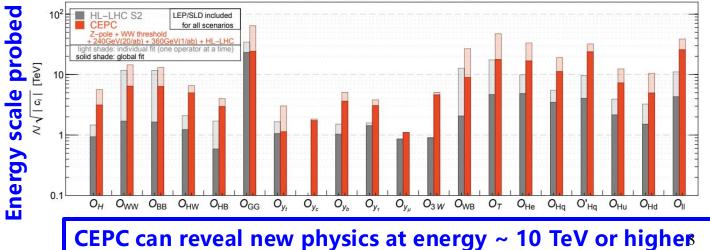

Not only number counting, but differentials, even probe new physics via some new technologies, such as AI.


CEPC Physics(selected)

e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified

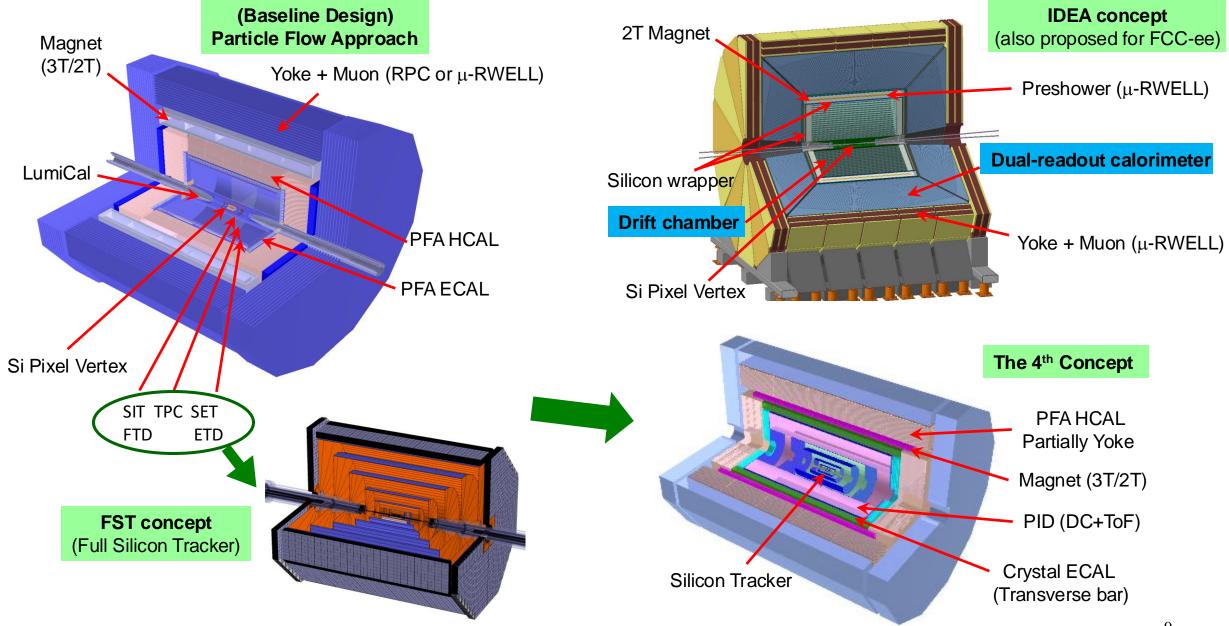

Chinese Physics C Vol. 43, No. 4 (2019) 043002


CEPC Physics(selected)

- Precision Higgs, EW, flavor physics & QCD measurements at unprecedented precision
- BSM physics (e.g. dark matter, EW phase transition, SUSY, LLP, ...) up to ~ 10 TeV scale

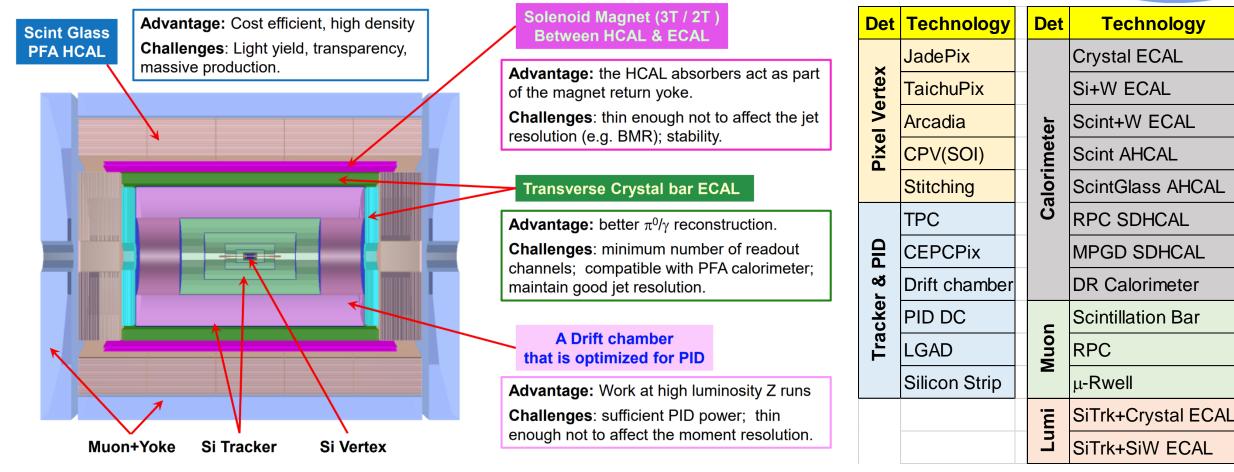
	1				
	$240{ m GeV},20{ m ab}^{-1}$		$360{ m GeV},1~{ m ab}^{-1}$		
	ZH	\mathbf{vvH}	ZH	\mathbf{vvH}	eeH
inclusive	0.26%		1.40%	\	\
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
$ m H{ ightarrow} m gg$	0.81%		3.40%	4.50%	12%
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \rightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$Br_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%		1.10%		

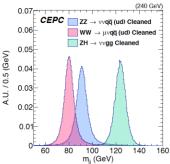
95% CL reach from SMEFT fit



arXiv:2205.08553

CEPC Conceptual Detectors: development

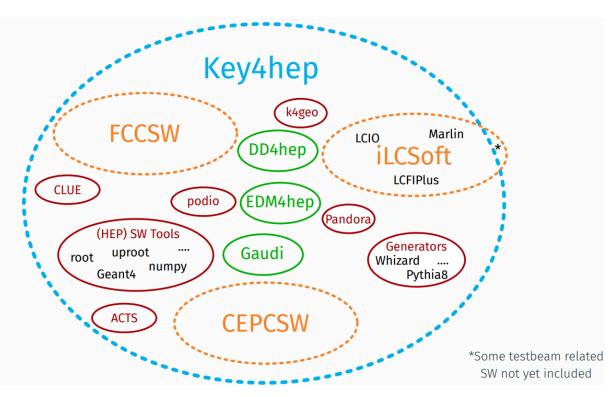




Novel Conceptual Detector Design

Novel detector design based on PFA calorimeter. Aim at improving BMR 4% → 3%

Detector	World-class level	CEPC design	
PFA based (ECAL)	~ 15% / √E	< 3% / VE (Crystal ECAL)	
PFA based (HCAL)	~ 50% / ve	\sim 40% / vE (Scintillating glass HC/	

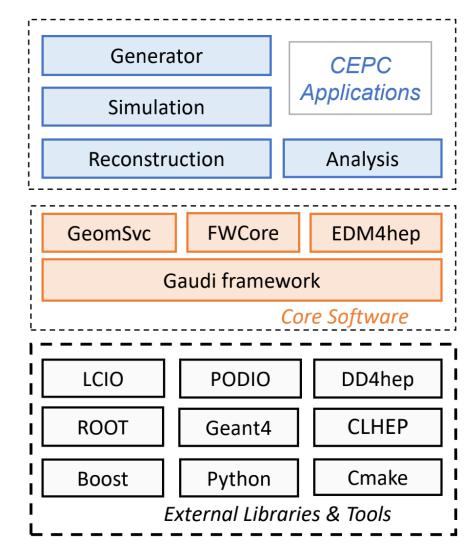


CEPC offline software

CEPCSW

T.Madlener | Key4hep & EDM4hep CEPC workshop, Edinburgh

• The development of CEPC software started with the iLCSoft


- Developed CEPC components for simulation and reconstruction
- Generated M.C. data for detector design and physics potential studies
- Particularly, CEPC CDR studies done with the iLCSoft
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June, 2019.
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiments

Key4hep project: <u>https://github.com/key4hep</u> CEPCSW is the first application based on Key4hep.

CEPCSW: Architecture

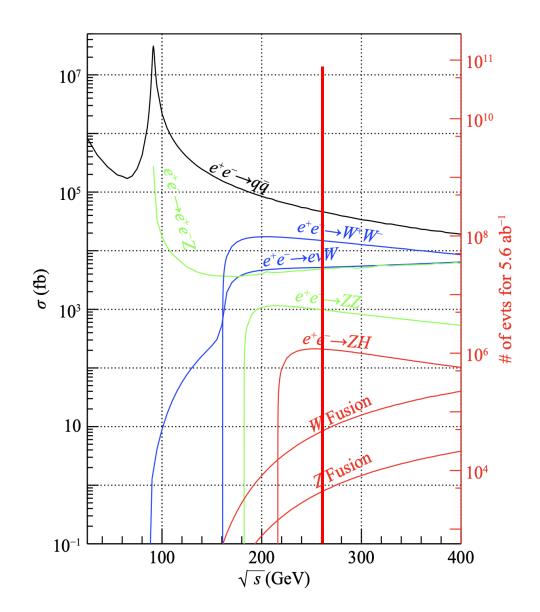
CEPC

- CEPCSW is organized as a multi-layer structure
 - Applications: simulation, reconstruction and analysis
 - Core software
 - External libraries
- The key components of core software include:
 - Gaudi: defines interfaces to all software components and controls their execution
 - EDM4hep: generic event data model
 - K4FWCore: manages the event data
 - DD4hep: geometry description
 - CEPC-specific framework software: generator, Geant4 simulation, beam background mixing, fast simulation, machine learning interface, etc.

https://code.ihep.ac.cn/cepc/CEPCSW

Generator samples

- Whizard+pythia6 is the main generator
- Pythia 8, madgraph5, Herwig, ... also used


For more detail information, please follow the meetings in https://indico.ihep.ac.cn/category/1043/ Dedicated tutorial on simulation production and analysis https://indico.ihep.ac.cn/event/25350/ https://indico.ihep.ac.cn/event/24004/

For Higgs study

Signals(fb)	240	360
ZH	196.9	126.6
WW fusion	6.2	29.61
ZZ fusion	0.5	2.80
Total	203.6	159.0
Total Events	4M	0.16M

Background(pb)		240	360
2fermion	ee(γ)	930	325
	μμ(γ)	5.3	2.1
	$qq(\gamma)$	54.1	23.2
	$tar{t}$	١	0.317
4fermion	WW	16.7	10.0
	ZZ	1.1	0.63
	sZ	4.54	5.78
	sW	5.09	6.00

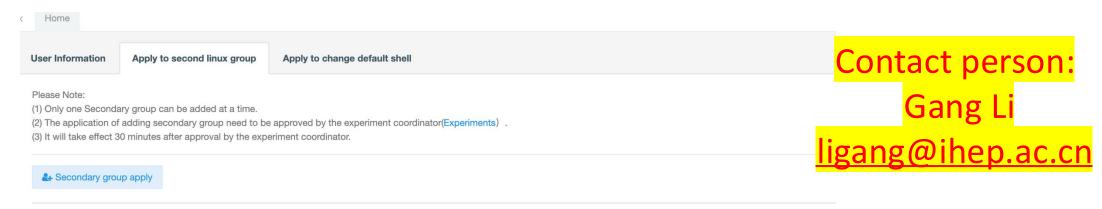
20/ab in 240GeV, 1/ab in 360GeV. ?? In 91 GeV and 160 GeV

Z-pole and W threshold study

• Z pole

- Hadron cross section ~ 30nb --- 4 Tera Z boson events
- Generate samples on demanding
- W threshold scan for W mass measurement
 - Various energy points
 - Moderate statistics
 - Also on demanding

Some useful information


How to apply an computing account of IHEP

- If you do not have IHEP SSO
 - Step 1: Apply SSO account on login.ihep.ac.cn by click the "register" button
 - Step 2: Apply AFS computing account once you have an SSO account and login to login.ihep.ac.cn

Apply for IHEP Computing Cluster Account				
Computing Service	Experiment	App. Date		
AFS	BES	2023-03-06		

- If you already have an AFS account but in higgs group
 - Login ccsinfo.ihep.ac.cn to request to join the second linux group : higgs

Websites and github repos.

- CEPC website: http://cepc.ihep.ac.cn/
- Internal wiki: <u>http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Main_Page</u>
- Internal docs: <u>http://cepcdoc.ihep.ac.cn/cgi-bin/DocDB/DocumentDatabase</u>
- CEPCSW gitlab repo: https://code.ihep.ac.cn/cepcsw/CEPCSW
 - Github repo: https://github.com/cepc/CEPCSW
 - Github key4hep repo:
 - <u>https://github.com/key4hep/k4FWCore</u>
 - <u>https://github.com/key4hep/EDM4hep</u>
- Previous CEPC software documentation: <u>http://cepcsoft.ihep.ac.cn/</u>

- General introduction to CEPC detector, software, and physics study
- Some useful information
- More you want to know about the CEPC?