

CEPC

Kaili Zhang zhangkl@ihep.ac.cn

CEPCSW 25.3.4

- 25.3.3 Fix the ITK Endcap -z order
 - Z->mumu momentum fixed.
- 25.3.4 Improve the momentum resolution
 - Fix the MCParticle Unit(MeV->GeV)
- Current sample: /cefs/higgs/zhangkl/Production/2503
- In specialized node, one H->bb event
 - Sim+Digi+Trk Time: ~24s per event. Memory: <4GB.
 - Rec Time: ~6s per event. Memory: <6GB.
 - Fail rate, for file existing: <0.2%. (34/24000 for 4 steps)
 - Fail rate, for event info complete: <2% (In JOI)

BMR	
-----	--

25.3.0

BMR results improved in 25.3.0.

Case	process	$ZH \rightarrow \nu \nu gg$	$ZH \rightarrow \nu \nu bb$	$ZH \rightarrow \nu\nu cc$	$ZH \rightarrow \nu \nu u u$	$ZH \rightarrow \nu \nu dd$	$ZH \rightarrow \nu \nu ss$
Physical level	BMR/%	3.87 ± 0.01	4.37 ± 0.03	4.09 ± 0.02		3.97 ± 0.01	4.33 ± 0.01
	Efficiency/%	74.4	74.5	74.8		74.8	74.8
Detector level	BMR/%	3.82 ± 0.01	3.70 ± 0.01	3.92 ± 0.01		3.94 ± 0.01	4.30 ± 0.01
	Efficiency/%	66.7	28.4	49.1		70.8	70.9

Case	process	$ZH \rightarrow \nu \nu gg$	$ZH \rightarrow \nu \nu bb$	$ZH \rightarrow \nu\nu cc$	ZH → vvuu	$ZH \rightarrow \nu \nu dd$	$ZH \rightarrow \nu \nu ss$
Physical level	BMR/%	4.00 ± 0.01	4.36 ± 0.03	4.16 ± 0.03	3.79 ± 0.01	3.97 ± 0.01	4.44 ± 0.01
	Efficiency/%	73.3	73.7	74.0	74.2	74.1	74.1
Detector level	BMR/%	3.95 ± 0.01	3.74 ± 0.02	4.01 ± 0.01	3.77 ± 0.01	3.95 ± 0.01	4.40 ± 0.01
	Efficiency/%	65.7	28.1	48.6	70.3	70.1	70.2

3

25.1.0

JER

Previous -0.2 bump only happen in jet2(E<Jet1). When Jet2 truth E~70, Higgs energy>140 in ZH 240GeV system. So only using jet1 in 70-80 GeV region, issue disappeared.

@Yingqi

JER ZH->vvbb, jet1 and jet2

2025/3/12

- Also, Jet1~55GeV and Jet2 ~75GeV can not be used due to confusion.
- JER should be consistent with BMR. Discrepancy should be from clustering.
- eeqq sample, without ISR be used to avoid confusion issue.

5

Jet Energy, N_PFO

- 93% jets 40< E <100 GeV.
- 80% jets 20<N_PFO<60.
 - This 7%, 20% can be seen as bad clustering. Possible improvement?
- bb jet energy slightly lower due to neutrino energy loss.
- NPFOs, gg>bb>others

- Avoid Confusion
 - 1-1 Correspondence
 - CSI to avoid clustering
 - Thrust/Energy balanced algo
 - Multi-step clustering.

N_tracks:

- In one b jet, typical 14 reco tracks.
 - Almost all of them can match with truth particles.
 - ~12.6 Pion, 1.2Kaon, 0.1Proton. 0.1 lepton.
 - N_CompleteTracks >> N_TPCTracks(Barrel, 200MeV, 60cm) >> N_TOFTracks(Barrel, 800MeV)
 - N_toftracks ~ 0.5 , 7 for one jet.

- bbTDR: 13.6093 ±5.57129
- ccTDR: 12.4619 ±5.43898
- ggTDR: 16.9754 ±6.46138
- uuTDR: 11.7313 ±5.4954
- ssTDR: 11.5422 ± 5.51865
- ddTDR: 11.6648 ± 5.50916
- High Pt track(>1 GeV) can be easily tagged but difficult for low energy tracks in jet.

D0, Z0 Vertex

3 Pattern: Primary vertex, secondary vertex, long-live particles(Like Klong)

PFO Energy

- Minimum energy for one PFO: 3MeV;
- Minimum energy for one charged track PFO: 100MeV.
- In all charged PFOs
 - E<1GeV: 1/3
 - Pt<1GeV: 44%

Reco PID in 25.3

This Event 5000 TOF size : 18 dqdx size : 26 PFO Size: 81 Track size: 29 MCParticles Size: 263 Stable MCParticle: 74 Matched MCParticle: 34 Ratio: 0.459459

- Typically, one b jet with 36PFOs, 14 tracks. 22 neutral PFOs.
 - Possible for 1-1 correspondence.
 - 22 neutral PFOs. Confusion, fragment...
 - ~6 neutral PFO can do truth matching to photon, Klong, and neutron. Usually E > 1GeV.
- In TOF and TPC, a chi2 given for track itself with e, mu, pi, K, p hypothesis.
 - Current: TOF+TPC chi2 and give the minimum chi2 as reco PID.
 - Pi/K/P: minimum chi2 in 3 to avoid pi/mu contamination;
 - Consider WP shift more for Kaon/Proton

Current Reco PID Performance in Jet

For one truth pion, the reco chi2 distribution. ~1% tracks with very high chi2. Plan to veto events with chi2>200 as chi2 window.

- Assume all the charged PFOs are Pion
 - Eff-100%; Purity-90%
- While current:
 - Eff=N_recoPion/N_truthPion=93%
 - Purity= 98%

Before 25.3:

JOI CDR&TDR

@Yongfeng

TDR in 25.1 sample. Results for 25.3 under training.

JOI CDR&TDR

@Yongfeng

TDR in 25.1 sample. Results for 25.3 under training.

