Performances in the 4quark environment

CEP

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences Geliang Liu (刘格良)

Mar. 12th, 2025

Samples

- Under the newest release: 25.3.4, available in the master branch
- ee \rightarrow Z(qq)H(bb)
- Location: /cefs/higgs/liugeliang/CEPC/202503/Production/Others/E240_qqHbb
 - \circ $\,$ Only use those produced today!
- 30k events

Selection

• ee-kt algorithm, with Njet = 4

- $\circ~$ Reco: clustered from all PFOs
- $\odot~$ Gen: clustered from all final-state, stable MC particles with $|\cos\theta| < 0.99$

• Gen match

 \circ Match reco jets and gen jets by $\Delta R:$ ordered by jet energy

• Event cleaning

- $\circ \sum P_T^{\nu} < 1 \text{ GeV}$
- $\circ \sum P_T^{\gamma_{ISR}} < 1 \text{ GeV}$

Momentum

ΔR(reco jet, gen jet)

Boson mass resolution

Determine the two jets from Higgs boson:

• Iterate among any permutations of the four jets and choose the one with the lowest

$$\frac{(M_{bb} - M_H)^2}{\sigma_H^2} + \frac{(M_{qq} - M_Z)^2}{\sigma_Z^2}$$

- $M_{\rm H}$ = 126.9 GeV, $\sigma_{\rm H}$ = 4.7 GeV, from Xiaotian's studies on BMR with CEPCSW 25.3.1
- $M_Z = 91.43$ GeV, $\sigma_Z = 4.77$ GeV, from <u>my studies on BMR</u> with CEPCSW 25.3.1

Boson mass resolution

Fit M^{reco} with DCB Separate based on barrel or endcap.

BMR larger than the results from nnHbb (~3.7%) Expected: at least due to jet constituents migration

Boson mass resolution

