

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences

Muon ID using muon chamber hits

Geliang Liu, Chenguang Zhang, Changhua Hao Mar. 12th, 2025

Samples

• Under the newest release: 25.3.4, available in the master branch

• Particle gun samples from Changhua:

- /afs/ihep.ac.cn/users/h/haochanghua/higgs/analysis/new/034
- /afs/ihep.ac.cn/users/h/haochanghua/higgs/analysis/new/036
- $P \in [1, 90] \text{ GeV}, \theta \in [10, 90]^{\circ}$
- Muon, electron, pion
- 1k events per point

• Particle gun samples from Chenguang:

- /cefs/higgs/zhangcg/cepc/10Mar/CEPCSW/tuplestrkresol*
- $Pt \in [1, 100] \text{ GeV}, \theta \in \{15, 85, 165\}^{\circ}$
- Muon
- 1k events per point

Track-hit matching

• Muon hits

- From 25.3.1, hits in muon chambers are constructed during tracking.
- Not fitted to reconstruct muon standalone tracks
- \circ $\,$ No magnetic fields outside of the center of the solenoid
- Not possible to measure momentum, but can be used to perform muon ID

• Match tracks to muon hits

- $\circ~$ Obtain the 5 parameters at the last hit of the track to build the helix
- Extrapolate the helix to the border of the magnetic field (R = 3885, z = 4075)
- Obtain the position and momentum at the border of the magnetic field (point M)
- Compare the relative position of the muon hits, and the track momentum at M

• Distinguishment

- Only muons can enter muon chambers
- Within a small cone of the extrapolated track, only muon track have large enough number of muon hits.

ΔR(track, hit)

3/12/2025

- With samples from Changhua: each event has one muon, one electron, and one pion with random φ.
- Remove electrons or pions too close to muons ($\Delta R < 0.5$).

Geliang Liu

Event display

Pt = 3 GeV, θ = 85°

Pt = 7 GeV, θ = 85°

Pt = 20 GeV, θ = 85°

- $\circ~$ Muons can only enter muon chambers if its pt is above ~ 1.75 GeV
- At low momentum, the energy loss during calorimeters can have visible impacts and are not taken into account by the helix extrapolation.

minimum ΔR(track, hit)

• Compute minimum ΔR among all hits

Cone size

- 99% percentile of the minimum $\Delta R(\text{track}, \text{hit})$ distribution of muons:
 - \circ 99% percent of muons have at least 1 hit around ΔR (track, hit) < cone size

Number of hits within the cone

Count number of muon hits within the cone

3/12/2025

Muon ID requirement

At least one muon hit within the cone

- eff(µ) ~ 99% at p > 4 GeV
- eff(e) and eff(π) ~ 1% at p > 4 GeV
- By adjusting the cone size, we get different WPs

Next steps

Optimization of ID using muon hits

- Other angles waiting to be checked
- Layer information?
- Probably not needed since the performance is already good

At low pt (< 3.5 GeV)</p>

- Muon hits not reliable
- Need to combine with TOF, TPC, E_ECAL, E_HCAL information

> Will have a complete PID soon

- Muon to be identified first
- Electrons identified based on TOF, TPC and E/p
- Hadrons are identified further

> Trying to have a user-friendly package for analyzers