

HIAF和CiADS上缪子源及可能的缪子物理实验

陈良文 徐宇 蔡汉杰 章学恒 等 中国科学院近代物理研究所 东江实验室

2025/4/25

□Introduction of muon source

□Muon sources at HIAF and potential physics

.....

□Muon sources at CiADS and potential physics

DSummary

□Introduction of muon source

DMuon sources at HIAF and potential physics

□Muon sources at CiADS and potential physics

DSummary

Phys. Rev. 50 (1936) 263

Cosmic ray muon:

muons at sea leval

J. Bae, Scientific Reports, 14,6717(2024)

Accelerator generation:

Broad applications of muon source facility

□Introduction of muon source

□Muon sources at HIAF and potential physics

□Muon sources at CiADS and potential physics

DSummary

Huizhou Campus

Lanzhou Campus

HIRFL is the highest energy heavy ion accelerator in China

> 20 experimental terminals

More than 200 users and over 150 experiments annually \triangleright

 \succ nuclear physics, atomic physics, materials science,

life sciences

The under-construction HIAF and CiADS accelerator complex

Location: Huizhou city, Guangdong province

Two Major National Science and Technology Infrastructure Projects, approved by central government in December 2015.

Total investment: ~ 6.8 billion CNY *Construction periods*:

> HIAF: Dec. 2018 – Dec. 2025 CiADS: July 2021 – July 2027

High-Intensity heavy-ion Accelerator Facility (HIAF): the world's most advanced heavy-ion accelerator with the highest pulsed beam intensity

HFRS

终端

放射性束线

1.

2.

3.

低能核结构谱仪 强流离子束辐照

终端2

BRing

超核研究装置 核物质性质 高能辐照-单粒子 终端4

SRing

Scientific goals: 高精度环形谱仪 电子-离子复合共振谱仪

Origin of heavy elements

Space radiation simulation

High-energy high-density physics

Nuclear force

China-initiative Accelerator-Driven Subcritical system (CiADS): the world's first megawatt-level ADS research facility

Scientific goals: to ensure stable, reliable, and long-term operation of accelerator, spallation target, and reactor systems, laying foundation for future industrialscale ADS facility.

- To explore the limit of nuclear existence
- To study exotic nuclear structure
- Understand the origin of the elements
- To study the properties of High Energy and Density Matter Fast extraction: High

Fast extraction: High-intensity pulsed p/ion

Slow extraction: Quasi-continuous p/ion

	iLinac	BRing		SRing	
Length / circumference (m)	114	569		277	
Final energy of U (MeV/u)	17 (U ³⁵⁺)/150	835 (U ³⁵⁺)	9300 (p)	800 (U ⁹²⁺)	3500 (p)
Max. magnetic rigidity (Tm)		34		15	
Max. beam intensity of U (ppp)	28 рµА	2×10 ¹¹	$(1-3) \times 10^{13}$	(0.5-1)×10 ¹²	$(1-3) \times 10^{13}$
Operation mode	CW or pulse	Fast ramping (12T/s, 3Hz)		DC, deceleration	
Emittance or Acceptance (H/V, $\pi \cdot mm \cdot mrad$, dp/p)	5 / 5	200/100, 0.5%		40/40, 1.5% (normal mode)	

Courtesy He Zhao

Experiment terminals

Experiment terminals

Representative projectile parameters

HFRS(High Energy Fragment Separator)

	Length (m)	Beam size at target (mm)	Angular acceptance(mrad)	Momentum acceptance (%)	Resolving power	Max. Βρ (Tm)
HFRS NIM.B 547(2024),165214	191.38	±1/±1.5	±30 (X); ±25 (Y)	±2.0	850/1100 (ΔX=±1mm)	25
SuperFRS NIM.B 204(2003),71	182.2	±1/±2	±40 (X); ±20 (Y)	±2.5	750/1500 (ΔX=±1mm)	20
BigRIPS Prog.Theor.EXP.Phys.2012,0 3C003	78.2	±0.5/±0.5	±40 (X); ±50 (Y)	±3	1260/3420 (ΔX=±0.5mm)	9.5
ARIS NIM.B 317(2013), 349	86.8	±0.5/±0.5	±40 (X); ±40 (Y)	±5	1720/3000 (ΔX=±0.5mm)	8

HFRS and Radioactive beamlines around the world

HFRS一条性能先进的弹核碎裂型次级束流装置

HFRS(High Energy Fragment Separator)

• Pion decay length

 $\lambda_{\pi} = v\gamma\tau_{\pi} = \frac{c \cdot \tau_{\pi} \left[2.6 \cdot 10^{-8} \text{ s}\right]}{m_{\pi} \left[139.6 \text{ MeV/c}^{2}\right]} \ p_{\pi} \left[\text{MeV/c}\right] \simeq 0.055 \ \frac{p_{\pi}}{\text{MeV/c}} \left[\text{m}\right]$

• Pion production at the beam entrance

- Muon production
- Muon purity ullet

, 9000 ×10³ ∞ ≻ 8000 ____

Muon yield and the corresponding purity for several representative projectiles

- Muon production
- Muon purity

____ 5000 ×10³ ∽_____ ≻___4500 ____

(a)

Muon yield and the corresponding purity for several representative projectiles

Potential muon experiments with muon @HIAF

arXiv:2411.12518

- □ A first high energy muon scattering experiment in China?
 - One of the highest intensity (4e6/s) GeV energy muon around world
 Direct searches for DM
 Searching dark boson

arXiv:2410.20323

Phys. Rev. D 110, 016017

Could be more sensitive to X boson at 1-10 MeV region! (to appear soon on arXiv)

□ 暗物质、暗玻色子

□ 量子纠缠

□ 质子半径

□ 大 x 区域 Parton distribution function

Δ

□Introduction of muon source

□Muon sources at HIAF and potential physics

□Muon sources at CiADS and potential physics

DSummary

一期:加速器和通用设施; 2022~2024 •加速器能量: 500 MeV (upgrade to 2.GeV)

- •加速器流强: 5 mA (upgrade to 10 mA)
- •系统总功率: <10 MW
- •运行模式: pulse&CW (gaps for reactor monitor)

二期:反应堆和实验大厅; 2025-2027

•T1: ADS终端, 10MW堆靶系统, Keff 0.75~0.97

- •T2: 高功率铅铋靶验证终端
- •T3:材料质子、中子辐照终端
- •T4: ADS中子学研究和数据库终端
- •T5: 未来规划待定ISOL、 缪子终端

□ CiADS reactor

- > A research facility with 3 months of annual operation
- □ Terminals at B05 experimental hall
 - High-power target testing terminal (HiTa)
 - Nuclear data experiment terminal (NDET)
 - Muon Science and Technology application terminal (MuST)
 - Multifunctional Material Irradiation Terminal (MIRS)
- **D** Beam supply modes
 - CiADS Reactor: ~3 months
 - Terminals at B05 Hall : 8–9 months (single or multi-terminal operation)
- **D** Beam-splitting methods
 - ➢ RF + Beam-cutting magnet: ISOL vs B05
 - Stripper foil + Bidirectional dipole magnet: HiTa vs NDET vs MuST+MIRS

The plan of CiADS muon source (MuST)

- □ Muon terminal area: ~800 m²
- **Construction plan of 2 phases**
 - Phase I (2025–2028): one target station (0.5 mA, 600 MeV, CW wave & time-structed beam), two muon beamlines
 - Phase II (2029–2032): Add one additional target station and two beamlines, power upgradable to 3 MW
- **Current design parameters**

Beam power	Target	Focusing method	Muon intensity (µ+/s)
1 st phase Graphite		Solenoid + quadrupole	> 5E7
300 KW	rotating target	Full solenoid	> 5E8
2 nd phase 3 MW	Liquid lithium target	Solenoid + quadrupole	>1E9
		Full solenoid	>1E10

Muon counter

Start signal

- High-precision tests of rare processes of muon and muonium
- Searching for charged lepton flavor violation,
 new physics beyond the standard model, CPT test
- High-precision measurement of muon spin rotation
 Searching for NEW spin-dependent interaction at long
 range (mediated by light axion-like particle or light boson)

无磁 质量源

ve

eg.:

$$V_{SP}(r) = \frac{\hbar^2 g_S g_P}{8\pi m} (\frac{1}{\lambda r} + \frac{1}{r^2}) \frac{\exp(-r/\lambda)}{r} \vec{\sigma} \cdot \hat{r}$$

$$V_{VA}(r) = \frac{\hbar g_V g_A}{2\pi} \frac{\exp(-r/\lambda)}{r} \vec{\sigma} \cdot \vec{v}$$

00

Potential mu e conversion experiment at CiADS

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0

The time structure of the beam can be realized in CiADS

对Mu2e,每个脉冲的POT约为3×10⁷ 对CiADS,每个脉冲的POT可达7×10⁹

Parameters	Mu2e-II	Mu2e@CiADS	
Proton kinetic energy	800 MeV	1000 MeV	
Proton on target per second	8×10^{14}	4×10^{15}	
Stopped muon per proton	9×10^{-5}	$\sim 1 \times 10^{-4}$	
Muon capture efficiency	0.609	0.609	
Geometrical acceptance	0.04	0.04	
Single event sensitivity	3×10^{-18}	$\sim 7 \times 10^{-19}$	

SES ~ 10⁻¹⁹ even more during 2030-2040

CiADS

Exploring the lifetime frontier at CiADS

1911.00481

 $m_{\rm LLP}$

Exploring the lifetime frontier at CiADS

Facility	Proton Energy @ Current	Duty factor	POT per year
	$500/600 {\rm ~MeV} @ 0.5 {\rm ~mA}$	75%	6.6×10^{22}
CiADS	$500/600 {\rm ~MeV} @ 5 {\rm ~mA}$	75%	$6.6 imes 10^{23}$
	$2 { m ~GeV} @ 5 { m mA}$	75%	6.6×10^{23}
HIAF	$9.3 { m ~GeV} @ 0.024 { m ~mA}$	8.3%	3.9×10^{20}

□Introduction of muon source

□Muon sources at HIAF and CiADS

□Potential particle physics experiments at HIAF and CiADS

DSummary

Muons as Probes for New Physics

- Muons have been an invaluable probe of the Standard Model.
- Precision muon searches and searches for muon/electron flavor transitions are indirect probes of new physics:

Muon g-2 anomaly

In general:

- Do not decay hadronically \rightarrow clean, well-understood backgrounds.
- Lifetime ~2.2 μ s \rightarrow can be stored efficiently before decay, decay easy to measure. *Plus:*
- Mass scaling could mean 10⁴ enhancement in coupling to BSM over electrons.

Can create high-intensity, clean, background-free, experimental environment to probe new physics.

Many experimental searches looking for new physics in the muon sector or ways to elucidate the apparent g-2 discrepancy will come online this decade.....

.... the 2020's are proving to be a very exciting time for muon physics!

Courtesy: S. C. Middleton @NuFact 2025

- The CiADS will operate in 2027 and demonstrate the full fuel-recycle strategy in 2030.
- The HIAF will operate by the end of 2025 to start the frontier research on HED physics, QED, QCD, and so on.
- Muon sources at CiADS and HIAF are the future terminal under discussion and plan to construct. Welcome the ideas of experiments and applications.

Thank you for your attention!

D. Glenzinski, et al. 1612.08931,1307.1168

