

中國科學院為能物現為完施 Institute of High Energy Physics Chinese Academy of Sciences

Status of the Elec-TDAQ system for the CEPC Det. Ref-TDR

Wei Wei

On behalf of the Elec-TDAQ system of the CEPC Ref-TDR

2025-01-24 CEPC Day

Outline

- Summary of the connection, crate & power
 - Update of the electronics room arrangement
- Status of the key ASICs R&D

Summary table for FEE related information @Higgs

Detector	Max data rate per fiber (Gbps)	Fibers per module	Fiber sum	BEE sum	Data crate sum	Module Max Power (W)	Total Power (kW)	Power channels	Power crate sum	HV requirem ents	HV channel s sum	HV crates sum	Comment
VTX	8	<mark>1~2</mark>	88	6	1	25	0.45	66	2	~-10V	66	1	
ТРС	0.1	1	496	32	4	32.2	16	496	6	-500V	496	4	
ITK- Barrel	0.96	1	2204	139	14	11.2	31.59	2204	29	50~200V	2204	10	
ITK- EndCap	2.2	1	1696	106	12	7.4	11.1	192	2	50~200V	1696	8	
OTK- Barrel	1.4	1	540	34	4	<mark>56.3</mark>	<mark>251.1</mark>	3780	79	150~200V	3780	17	Det needs opt
OTK- EndCap	0.7	1	720	45	6	<mark>58.9</mark>	35.6	720	16	150~200V	720	4	Det needs opt
ECAL- Barrel	4.8	2	960	60	6	31	17.5	480	5	40~60V	480	2	
ECAL- EndCap	4.8	2	520	34	4	31	9.5	260	4	40~60V	260	2	
HCAL- Barrel	0.14	1	<mark>5536</mark>	<mark>346</mark>	36	9	66.1	<mark>5536</mark>	58	40~60V	5536	26	
HCAL- EndCap	1.75	1	3072	192	20	11	41.3	<mark>3072</mark>	32	40~60V	3072	14	
Muon- Barrel	0.004	1	288	18	2	2.6	0.76	288	3	40~60V	288	2	
Muon- EndCap	0.01	1	96	6	1	4.7	0.45	96	1	40~60V	96	1	
<mark>Sum</mark>			<mark>16216</mark>	<mark>1018</mark>	<mark>110</mark>		<mark>481.45</mark>	17190	<mark>237</mark>		<mark>18694</mark>	<mark>91</mark>	

Only FEE Power summarized in the table. Extra power for BEE & crate efficiency hard to be calc. at the moment

Electronics room

- Minimum crates from current MDI
 - 110 data crates, 237 power crates, 91 Det-HV crates, 20 Trigger crates
- Minimum racks from current MDI
 - 37 data racks, 24 power racks, 23 Det-HV racks, 10 trigger racks (94 in total)
 - More 2 racks for AC-DC power for all the above racks
 - 96 racks in total
- Racks Size: $0.5m \times 0.5m$
- Side clearance 1.5m for heat, face clearance 2m for cabling & heat
 - Very rough estimation: 20% more power will be consumed due to the crate efficiency
- Total room: $500m^2 \times 2floor = 25m \times 20m \times 2floor$
 - $10 \times 10 \times 2=200$ racks capacity
 - Necessary redundancy for future upgrade

Comment on (some of) the ASIC/chip power

- Taichu-Stitching @ Vertex
 - 40mW/cm² (@TJ65nm)
 - Same level as ALICE-ITS3 (world leading), but with higher (bkgrd) rate (higher challenge)
 - Currently have difficulties of using TJ65 (political issues), if only TJ180nm can be used, the power will be 60mW/cm²
- Juloong @ OTK
 - 20mW/ch @ 7pF Cd for 30ps
 - Strongly depend on sensor design & capacitance & timing requirement
 - Current value is a self-consistent calculation based on current AC-LGAD, only for Ref-TDR
 - Co-optimization is a must for sensor, electronics & cooling (urgent sensor prototyping on going)
- ChoMin @ SiPM for ECAL/HCAL/Muon
 - 15mW/ch
 - Same level as HGCROC (state-of-the-art), a reasonable value and seems not a heavy load for cooling by simulation
 - Concerning on the high bkgrd-rate, lower power is not reasonable at current stage
 - However, many spec not well-understood related to the SiPM-device, crystal & bkgrd, ASIC scheme may have to change with a higher power

Comment on other chip power

- COFFEE @ ITK
 - 200mW/cm², a typically value of a pixel chip
- "TEPIX" @ TPC
 - $100 \, mW/cm^2$
 - Total power of 8kW/endcap, limited directly by detector design
- Common ASICs
 - ChiTu @ Data Link
 - > 0.75W, same value as lpGBT (world-leading in HEP)
 - KinWoo @ Opto-elec interface
 - > 0.25W, same value as VTRx (word-leading in HEP)
 - TaoTie @ Data Aggregation
 - Currently power & spec is not strongly constraint
 - > Will be focusing on ChiTu implementation, and to be understood in the next stage
 - Basha series@ power
 - Power conversion efficiency 80%~90%
 - Same level as bPol (world-class in HEP)

Summary table for data

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ОТКЕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon	
Channels per chip	512*1024 Pixelized	512*128	1024	128		128	8~16 @common SiPM ASIC					
Ref. Signal processing	XY addr + BX ID	XY addr + timing	Hit + TOT + timing	ADC+TDC/TOT+TOA		ADC + BX ID	TOT + TOA/ ADC + TDC					
Data Width /hit	32bit	42bit	32bit	40~48bit		48bit	48bit					
Max Data rate / chip	2Gbps/chi p@Trigge rless@Lo w LumiZ Innermost	Avg. 3.53Mbps/c hip Max. 68.9Mbps/c hip	Avg. 21.5Mbps/c hip Max. 100.8MHz/ chip	Avg: 2.9Mbps/chip Max: 3.85Mbps/chip	Avg: 38.8Mbps/chip Max: 452.7Mbps/chip	~70Mbps/ module Inmost	Avg. 0.96Gbps/module Max:9.6Gbps/module		Max. 144Mbps/modul e-layer	Max. 350Mbps/modul e-layer	Max: 10 Mbps/board	
Data aggregation	10~20:1, @2Gbps	14:1@O(10 0Mbps)	22:1 @O(100Mb ps)	i. 22:1 @O(5Mbps) ii. 7:1 @O(100Mbps)	i. 22:1 @O(50Mbps) ii. 10:1 @O(500Mbps)	1. 279:1 FEE-0 2. 4:1 Module	i. 4~5:1 side ii. 7*4 / 14*4 bao O(100Mbps)	ck brd @	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)	<=24:1 @ O (400 Mbps)	
Detector Channel/m odule	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 modules	11520 chips 720 modules	492 Module	0.96M chn ~60000 chips 480 modules	0.52M chn ~32500 chips 260 modules	3.38M chn 5536 aggregation board	2.24M chn 1536 Aggregation board	43.2k ch 72 Aggregation board	
Avg Data Vol before trigger	474.2Gb ps	101.7Gbp s	298.8Gbp s	249.1Gbps	27.9Gbps	34.4Gbps	460Gbps	250Gbps	811.2Gbps	537.6Gbps	~ 2.07 Gbps	

A summary of FEE power

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ΟΤΚΕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon	
Channels per chip	512*1024 Pixelized	512*128	1024	128		128	8~16 @common SiPM ASIC					
Technology	65nm CIS	55nm HVCMOS	55nm HVCMOS	55nm CMOS		65 CMOS	55nm CMOS (or 180 CMOS?)					
Power Supply Voltage (for DC-DC) (V)	1.2	1.2	1.2	1.2		1.2	1.2 (or 1.8?)					
Power@chip	40mW/cm ² 200mW/chip	200mW/cm ² 800mW/chip	200mW/cm ² 336mW/chip	20mW/chn 2.56W/chip		280µW/chn 35mW/chip 100mW/cm²	15mW/chn 240mW/chip					
Max chips@modu le	29	14	22	22	3	1115	64	120	8	92	167	
Power@mod ule (W)	5.8	11.2	7.39	56.3	58.9	32.2	30	30	9	11	4.7	

Status of the new ASICs R&D

- (Major) concern/comment from IDRC on Electronics system:
 - By far the highest risk in the electronics is designing and delivering the 6 FEE-ASICs needed.
 For the 6 FEE-ASICs needed to readout the detector subsystems, there is significant effort needed.
 - There are design teams already working on 2 of the chips (for VTX and TPC detectors) and another has been identified for the ITK.
- New ASICs (common & FEE) R&D Plan & team
 - HVCMOS@ITK, TEPIX@TPC not focused
 - > Chip prototypes & fixed design team already exists for several years
- Current status

Timeline for all the FE ASICs – common ASIC – long term

Overall	Elec TDR Draft1		Ref-TDR release		1 st Milestone	Towards final CEPC detectors	2 nd Milestone	
Electronics	2024.12	2025.6			2027.12		2029.12	
Power & DC-DC	2024.11	2025.1	<mark>2025.4</mark>	2026.12	2027.12 Madula an	2028.12	2029.12	
(BaSha霸下)	GaN Selection	schematic design	1 st tapeout	prototype	detector test	& Inductor design	BaSha prototype	
Data Link	2024.10	2025.1	<mark>2025.4</mark>	2026.12	2027.12	2028.12	2029.12	
(TaoTie饕餮、ChiTu 赤兔 & KinWoo金乌)	Protocol define	Scheme define	<mark>1st tapeout</mark> Chip set	ChiTu & KinWoo func prototype	ChiTu & KinWoo on detector test	Rad enhancement & Taotie development	Rad-tol ChiTu DataLink prototype	
· · · · · · · · · · · · · · · · · · ·	2024.12	2025.1	2025.12	2026.12	2027.12		2029.12	
VTX STCH (Taichu-Stitching	Preliminary scheme for	Taichu-stitching-180 development —>	1 st design of wafe level stitch onTJ1	er- 80 r	wafer-level stitching mechanical prototype	TJ65 wafer-level Stitching detector		
、太初-补天)	Stitching		TJ65 design kit finalization —	TJ65 single chip design	TJ65 single chip → prototype		prototype	
			2025.6	2026.12	2027.12		2029.12	
PIX TPC			Prototype beamtest	Chip optim for optimized TPC	Optimized Prototype beamtest		Chip Finalization	
OTK	2024.12	<mark>2025.4</mark>	2025.12	2026.6	2027.10		2029.12	
AC-LGAD (JuLoong烛龙)	FPMROC chip test (for FASTPMT)		FPMROC prototy test (for FASTPM	pe T)	AC-LGAD detector		Chip Finalization &	
	Preliminary scheme	──> <mark>1st tapeout</mark>	optimization	tapeout				
ECAL/HCAL/Muon SiPM ASIC		2025.1	<mark>2025.4</mark> 20	25.12 202 Existing	26.12 20	27.12	2027.12	•
(ChoMin重明)		Spec finalization & device selection	<mark>1st tapeout</mark> 1 st Sil	PMASIC N modified test Y SiPM	fication HCA ASIC pro nization	L module ototype	Chip Finalization	10

Current status of the Data Link chip set

- Aiming to have the 1st tapeout in April, a full chip set
 - Main target: a full functional ChiTu chip, the kernel chip of the data link system
 - Secondary target: a full (but minimum) chip set that can form a data transmission system
 - May delay to July due to the complexity
- The major three parts: TaoTie@Aggregation, ChiTu@Data Link, KinWoo@optical module, all have detailed schemes, interface, block division, and task allocation

Current status of the Data Link chip set

INN

TaoTie

ChiTu clock system

KinWoo VCSEL Driver

- Main schemes established (details skipped)
- Most new design proceeded to the code level with block simulation
 - To do co-simulation
- Design Team (not FTE)
 - IHEP:3 staffs +3 students
 - CCNU:2+8
 - NWPU:2+2
 - USTC:1+2
 - WTU:2+2
 - IPAS:1+1
 - HPU:1+2

Current status of the Basha Power module

DC-DC controller scheme (ready)

Figure 11.61: Floor plan of Basha DC-DC module

- Chip design:
 - The kernel GaN transistor selected by rad-test
 - **DC-DC controller** 1st tapeout in April
 - Schematic design accomplished, to be co-sim and layout
- Module design
 - Scheme defined to be $48V \rightarrow 12V$, $12V \rightarrow LV$
 - Experienced design team from Univ. & Industry contacted and will be involved very soon
- Air Core Inductor study
 - Main constraint for the module size
 - Try to investigate with industrial help
- Commercial DC-DC & LDO
 - By TID test, some COTS power device found that can even survive at CEPC level
 - Can be backup devices at early stage for prototypes
- Design team
 - **IHEP: 3**
 - NWPU: 1+2
 - USTC: 1+1
 - TECHORILUX: 2

Current status of the ChoMin ASIC for SiPM

(pre-defined) spec list of ChoMin

- The recent discussion focus in electronics system
- Several possible schemes prepared for major cases (normal rate, high bkgrd, dispersion signals)
 - Many characteristics still unclear up to now
- Will try to summarize a spec list with coagreement with CAL/MUON very soon
 - Parameters with reasonable prospective optimization, e.g. Cd@pF
- 1st single chn MPW in April
 - Very tight schedule left
- Design team
 - IHEP: 3+3
 - CCNU: 1+3
 - NWPU: 1+1

Current status of the JuLoong ASIC for OTK

JuLoong diagram

- JuLoong scheme proposed according to current OTK design (for Ref-TDR)
 - Waiting for the new LGAD prototype for further optim.
 - 1st tapeout expected in April
- For the co-test at early stage, FPMROC (for TOF-PET) has been tapeout and tested with 10ps spec
 - Key analog blocks with similar scheme as JuLoong, power will be optimized for 30ps spec
 - TDC scheme will be replaced by a low-power version

FPMROC 1st tapeout

Current status of the Taichu-Stitching Design for VTX

- Although Taichu exists, very high challenges remain for a stitching VTX, almost a new ASIC
- Final scheme will be separately verified due to high cost, risk and political issues
- Main target:
 - A stitching prototype, fully functional, most spec of CEPC achieved, to verify the main scheme of CEPC VTX
 - Will based on TJ180-STH & Taichu matrix
- Secondary target
 - Verify most other specs of CEPC, only without stitching
 - Will based on TJ65, waiting for the availability of technology
- Design team
 - IHEP: 5+4
 - NWPU: 2+3
 - **SDU: 1+1**
 - CCNU: 1
 - NCU: 1

Naming of the common ASICs

ChiTu & the God of War Guan Yu

KinWoo in the sun

TaoTie

BaSha carrying a monument

- ChiTu (赤兔) @ Data Link:
 - the most famous horse in Chinese tales, ridden by the Chinese
 God of War Guan Yu. It is in charge of transportation with
 ultra fast speed, just as Data Link chip is doing.
- KinWoo (金乌) @ Optical module:
 - the bird who lives in the sun in Chinese tales, an avatar of the sun and in charge of the light, just as the optical module does, to convert electronic signal to/from optical.
- TaoTie (饕餮) @ Data aggregation:
 - a mythical animal in Chinese tales, who can swallow anything, just as the chip does, to collect all the input data streams.
- BaSha (霸下) @ Power module :
 - one of the nine sons of the Chinese Loong, who is famous for its strongness and always to bear a monument. Just like the powering system which is the basement and support of all electronics.

Naming of the new FEE ASICs

Nuwa Mends the Sky (Taichu-Stitching)

JuLoong in Classic of Mountains and Seas

A statue of the bird of ChoMin

- Taichu-Stitching(太初-补天) @ VTX:
 - One of the most events happened in the very beginning of the ancient world (Taichu's Period 太初时期) is "Nuwa Mends the Sky (女娲补天)", well known in Chinese story. The action mending equals to stitching, both make a surface seamless.
- JuLoong(烛龙) @ OTK:
 - A divine beast in Chinese mythology that governs time. As the front-end ASIC of the OTK detector, its primary design goal is to achieve the highest time resolution performance of the entire detector, corresponding to the function governed by JuLoong
- ・ ChoMin (重明) @ SiPM for ECAL/HCAL/Muon:
 - An ancient Chinese legend tells of a mythical bird called "Double Vision" with two eyeballs in each eye. This bird will serve as a versatile ASIC in ECAL, HCAL, and Muon detectors, symbolizing the concept of ChoMin, which is to detect signals from multiple detectors. The main design challenge is to accommodate the wide dynamic range of ECAL, so the chip will feature dual-range amplification in the front-end, aligning with the idea of multiple visions.

Summary for the new chip status

- Schemes almost defined ullet
- 1st tapeout in April for most of chips, 4 MPWs ۲
 - Depend on complexity (and paper work), some may postponed to July
- A wide collaboration established with major affiliations in the field •
- ~20 FTE involved (not precise) •
 - Still far from enough (compared with CERN experience), real work can be started at least
 - Many common blocks design in multiple chips, with shared manpower
 - > A similar "Matrix management" is running
 - > Redundant head counting in the former chip design team, which is the real case
- **Targeting milestones in a word (from now on)** ullet
 - Thank you! - 3 years with functional prototypes and co-test, ready for the acceptance review
 - 5 years with (almost) design finalization of chips, ready for pre-production