

Group meeting

2025/03/14

Update for ISR

Update: Trigger efficiency

- $\pi^+\pi^-$ J/ ψ mode in Belle: 98.7% for $\pi^+\pi^-$ J/ ψ channel, 1.0% was taken to be a conservative estimate of the systematic error on the $\pi^+\pi^-$ J/ ψ mode.
- $\mu^+\mu^-$ mode in Belle: 91.4% for $\mu^+\mu^-$ channel, 1.5% was taken to be a reasonable systematic error for the $\mu^+\mu^-$ mode.
- $\pi^+\pi^-$ J/ ψ mode in Belle II: 96.1% for $\pi^+\pi^-$ J/ ψ channel, 1.0% was taken to be a conservative estimate of the systematic error.
- $\mu^+\mu^-$ mode in Belle II: 95.9% for $\pi^+\pi^-$ J/ ψ channel, 1.0% was taken to be a conservative estimate of the systematic error.

Update for two photon

π^0 selection for Belle

- photons were categorized into two categories $(\gamma_{high}, \gamma_{low})$ based on clusterE.
- cluster E > 30 MeV for γ_{low} in barrel, cluster E > 40 MeV for γ_{low} in endcaps. Why and effi?
- For π^0 candidates with transverse momentum $P_t < 0.2~{\rm GeV}/c$, only the best one with the smallest χ^2 of the mass fit was selected to suppress the backgrounds

Update for two photon

When to do BCS?

Update for two photon

ω selection

- ω mass window: $0.72 \, \text{GeV}/c^2 < M_{\pi^+\pi^-\pi^0} < 0.84 \, \text{GeV}/c^2$.
- ω sideband: $0.62 \, \mathrm{GeV}/c^2 < \mathrm{M}_{\pi^+\pi^-\pi^0} < 0.70 \, \mathrm{GeV}/c^2$, $0.86 \, \mathrm{GeV}/c^2 < \mathrm{M}_{\pi^+\pi^-\pi^0} < 0.94 \, \mathrm{GeV}/c^2$.

Add dalitz check and cut flow