Methods & Considerations for Calibration, Alignment CEPC ECAL

Jin Wang¹

1: Institute of High Energy Physics, CAS

Introduction

 Recommendation from IDRC: Explain how calibration for each sub-detector will be achieved through physics processes, and document specific calibration methods in the Ref-TDR

1.4	Challenges & Plan			17
	1.4.1	1.4.1 Strategy for the measurement of absolute luminosity (Ivanka Bozovic)		
	1.4.2	Plan of the use of resonant depolarization for W/Z mass (Zhe Duan)		
	1.4.3	4.3 Methods & Considerations for Calibration, Alignment (Jin Wang, Qun Wang, Chu Wang, Tian		
		Cao)		19
		1.4.3.1 Vertex 3	Detector Calibration and Alignment	19
		1.4.3.1.1	Calibration using physics processes	19
		1.4.3.1.2	Dedicated calibration methods	20
		1.4.3.1.3	Alignment methods	20
1.4.3.2 Tracker Calibration and Alignment			r Calibration and Alignment	20
		1.4.3.2.1	Calibration using physics processes	20
		1.4.3.2.2	Dedicated calibration methods	21
		1.4.3.2.3	Alignment methods	21
	Γ	1.4.3.3 ECAL	Calibration and Alignment	22
		1.4.3.3.1	Calibration using physics processes	22
		1.4.3.3.2	Dedicated calibration methods	24
		1.4.3.3.3	Alignment methods	24
		1.4.3.3.4	Summary	
		1.4.3.4 HCAL	Calibration and Alignment	26
		1.4.3.4.1	Calibration using physics processes	26
		1.4.3.4.2	Dedicated calibration methods	26
		1.4.3.4.3	Alignment methods	26
		1.4.3.5 Muon S	System Calibration and Alignment	26
		1.4.3.5.1	Calibration using physics processes	26
		1.4.3.5.2	Dedicated calibration methods	26
		1.4.3.5.3	Alignment methods	27
		1.4.3.6 Summa	ry of Calibration and Alignment Approach	27

Calibration using physics processes

Typical physics processes

- \odot Bhabha scattering (e+e- \rightarrow e+e-) : high statistics, realies on tracker
- π0: high statistics, low energy region, high photon systematics
- Z → e+e-: low statistics, high energy region, well-known scales
- W events, $J/\psi \rightarrow e+e^-$, complementary

E/p method for time-dependent corrections (Bhabha, W/Z)

- Calorimetric energy can be compared to the tracking momentum for monitoring time-dependent drifts of the ECAL
- Track quality cuts: Require well-reconstructed tracks in the inner tracker to ensure good momentum resolution and minimize inefficiencies.
- Selection of scattering angles and momentum ranges: Impose angular cuts to reduce forward or backward beam backgrounds, and restrict ptrack to the region where the tracker has optimal performance.
- Fit the E/p distribution: Extract calibration constants (i.e., offsets in the mean) and resolution parameters (e.g., widths, non-Gaussian tails) by comparing data with either simulation or analytical models.

Intercalibration and absolute scale calibration

- $\pi 0 \rightarrow \gamma \gamma$ calibration with neutral pions produced in hadronic events
 - High statistics, good for precise calibration of fine-grained non-uniformities.
 - Photon selection and clustering
 - Select photon candidates using electromagnetic shower characteristics, requiring minimal hadronic contamination
 - Apply isolation cuts to suppress merging of overlapping clusters
 - Use clustering algorithms to reconstruct photon showers, ensuring containment of most of the energy within the selected cluster
 - Discard clusters with significant energy leakage or those affected by dead/hot channels.
 - Invariant mass reconstruction and event weighting
 - Construct all possible photon pairs in each event.
 - Compute the invariant mass of each candidate pair

$$M_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \theta)}$$

Intercalibration and absolute scale calibration

- Intercalibration to equalize channel-to-channel response
 - Compute the per-event calibration factor for each π0 event

$$IC_{\text{event}} = \frac{M_{\pi^0}^{\text{true}}}{M_{\pi^0}^{\text{measured}}}$$

 Distribute this factor across all contributing crystals in the photon clusters, weighted by their energy

$$IC_i^{\text{event}} = IC_{\text{event}} \times w_i, \quad w_i = \frac{E_i}{E_{\text{cluster}}}$$

 Accumulate all events and compute the final per-crystal intercalibration constant as a weighted average

$$IC_i = \frac{\sum_{\text{events}} IC_i^{\text{event}} \cdot w_i}{\sum_{\text{events}} w_i}$$

Iterate the process until the intercalibration factors converge

Intercalibration and absolute scale calibration

- Z → e+e- events provide a clean, well-known resonance suitable for both intercalibration and absolute scale calibration
 - Electron selection Impose track quality cuts, require ECAL clusters with energy deposit shapes consistent with electromagnetic showers, and demand opposite-charge pairs.
 - Background rejection Exclude non-resonant e+e- production or τ decays by applying mass window cuts around the Z peak.
 - Invariant mass fit Compare the measured mee distribution to the true Z mass. The shift in the peak (and any width change) indicates calibration offsets.
 - Regional and channel-level intercalibration Assign a single scale factor to each η ring to align its Z mass peak with the known value. - Perform additional fine-grained intercalibration at the channel level using local variations in reconstructed electron energy.
- Weighted combination of Z and $\pi 0$ intercalibration $IC_{\text{combined}} = \frac{IC_{\pi^0}/\sigma_{\pi^0}^2 + IC_Z/\sigma_Z^2}{1/\sigma_{\pi^0}^2 + 1/\sigma_Z^2}$
- A low-energy resonance such as J/ψ serves as an extra cross-check, particularly in the few-GeV range.

- **ECAL-tracker alignment**: minimizing the difference in the η/φ between the ECAL cluster and the extrapolated track position
 - Relative alignment of ECAL crystals with the tracker detector using $Z \rightarrow e^+e^-$ events
 - For each e⁺ and e⁻, the distance between its track extrapolated from the tracker and its ECAL cluster position is minimized along η and φ directions
 - Iterative corrections update the relative positions of ECAL modules, minimizing residuals and improving overall alignment

Mechanical monitoring

- Integrated strain gauges, temperature sensors, and laser trackers monitor deformations or thermal expansion in the support structures.
- This complementary information can be incorporated into the alignment model, ensuring a stable and consistent detector geometry over long operation periods.

Dedicated calibrations

Crystal transparency and SiPM response calibration

- The response of the ECAL is affected by variations in crystal transparency and silicon photomultiplier (SiPM) performance over time.
 - LED/laser injected to selected channel to monitor these effects in-situ?
- High-energy cosmic muons deposit near-minimum-ionizing signals (MIPs) in the ECAL, providing a continuous and natural source of calibration data, particularly during beam-off periods.
- By comparing the energy deposition of MIPs across different channels, relative response variations due to radiation damage, temperature fluctuations, or long-term aging can be identified and corrected.

Dedicated calibrations

Pedestal and noise scans

- Pedestal and noise levels are critical for ensuring optimal ECAL performance.
- Periodic calibration runs without beam collisions or with random triggers measure each channel's baseline (pedestal) and electronic noise.
- These measurements are essential for:
 - defining dynamic energy thresholds to suppress electronic noise while maintaining high sensitivity
 - identifying and masking excessively noisy channels to prevent artifacts in physics data
 - providing input for time-dependent noise corrections that improve energy reconstruction in low-energy events

Pulse shape and timing calibration

 Precise timing and pulse shape reconstruction are crucial for optimal energy esolution, pileup mitigation, and event reconstruction.

Template-based pulse shape corrections

- Each ECAL channel has a characteristic pulse shape, typically modeled using a reference pulse template derived from high-statistics calibration events.
- Variations in pulse shape arise from differences in crystal light collection,
 SiPM response, and electronics timing offsets.
- These effects are corrected using channel-specific calibration constants. A time-dependent correction accounts for aging effects, ensuring stable pulse shape reconstruction over long data-taking periods.

Pileup and out-of-time corrections

 Dedicated out-of-time pulse shape templates are used to identify and suppress contributions from previous or subsequent bunch crossings.

Dedicated calibrations

Timing synchronization and corrections

- Inter-channel synchronization is essential to ensure consistent timing across the ECAL.
- Timing offsets arise from differences in electronic signal propagation, clock synchronization, and temperature variations.
 - Cosmic ray muons to verify inter-channel synchronization over large detector regions
 - Well-identified prompt photons or electrons from Z → e+e− decays provide absolute time reference points.
- A final per-channel time alignment correction can be applied to ensure that all signals are synchronized within tens of picoseconds, enabling precision time-of-flight measurements and background rejection.

Summary of CEPC ECAL calibration and alignment

- Time-dependent drift correction with E/p method
 - Bhabha scattering and W/Z decays.
- Channel intercalibration, absolute scale calibration, stability monitoring
 - π0→γγ and Z→e+e−
- Additional Cross-Checks:
 - J/ψ→e+e− low-energy validation of the calibration scheme
- Dedicated Calibration Methods:
 - LED Systems: Monitor selected/partial crystal transparency and SiPM response in real time.
 - Cosmic Muons (MIPs): Supply continuous, natural calibration for channel uniformity.
 - Pedestal/Noise Scans: Regularly update baselines and optimize noise thresholds.
 - Pulse Shape & Timing Calibration: correct pulse shape variations and timing drift to ensure stable performance.
- Track-Based Alignment and Mechanical Monitoring