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 Recommendation from IDRC: Explain how calibration for each sub-detector will be 
achieved through physics processes, and document specific calibration methods in the 
Ref-TDR
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 Typical physics processes
 Bhabha scattering (e+e− → e+e−)  : high statistics, realies on tracker
 π0: high statistics, low energy region, high photon systematics
 Z → e+e−: low statistics, high energy region, well-known scales
 W events, J/ψ → e+e−, complementary

 E/p method for time-dependent corrections (Bhabha, W/Z)
 Calorimetric energy can be compared to the tracking momentum for 

monitoring time-dependent drifts of the ECAL
 Track quality cuts: Require well-reconstructed− tracks in the inner tracker to 

ensure good momentum resolution and minimize inefficiencies.
 Selection of scattering angles and momentum ranges: Impose angular cuts 

to reduce forward or backward beam backgrounds, and restrict ptrack to the 
region where the tracker has optimal performance.

 Fit the E/p distribution: Extract calibration constants (i.e., offsets in the 
mean) and resolution parameters (e.g., widths, non-Gaussian tails) by 
comparing data with either simulation or analytical models. 
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 π0 → γγ calibration with neutral pions produced in hadronic events
 High statistics, good for precise calibration of fine-grained non-uniformities. 
 Photon selection and clustering

 Select photon candidates using electromagnetic shower characteristics, requiring 
minimal hadronic contamination

 Apply isolation cuts to suppress merging of overlapping clusters
 Use clustering algorithms to reconstruct photon showers, ensuring containment of 

most of the energy within the selected cluster
 Discard clusters with significant energy leakage or those affected by dead/hot 

channels.
 Invariant mass reconstruction and event weighting

 Construct all possible photon pairs in each event.
 Compute the invariant mass of each candidate pair
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 Intercalibration to equalize channel-to-channel response
 Compute the per-event calibration factor for each π0 event

 Distribute this factor across all contributing crystals in the photon clusters, 
weighted by their energy

 Accumulate all events and compute the final per-crystal intercalibration 
constant as a weighted average

 Iterate the process until the intercalibration factors converge
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 Z → e+e− events provide a clean, well-known resonance suitable for 
both intercalibration and absolute scale calibration
 Electron selection - Impose track quality cuts, require ECAL clusters with 

energy deposit shapes consistent with electromagnetic showers, and 
demand opposite-charge pairs.

 Background rejection - Exclude non-resonant e+e− production or τ decays 
by applying mass window cuts around the Z peak.

 Invariant mass fit - Compare the measured mee distribution to the true Z 
mass. The shift in the peak (and any width change) indicates calibration 
offsets.

 Regional and channel-level intercalibration - Assign a single scale factor to 
each η ring to align its Z mass peak with the known value. - Perform 
additional fine-grained intercalibration at the channel level using local 
variations in reconstructed electron energy.

 Weighted combination of Z and π0 intercalibration 
 A low-energy resonance such as J/ψ serves as an extra cross-check, 

particularly in the few-GeV range.
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 ECAL-tracker alignment: minimizing the difference in the η/φ 
between the ECAL cluster and the extrapolated track position
 Relative alignment of ECAL crystals with the tracker detector using 𝑍𝑍 →
𝑒𝑒+𝑒𝑒− events

 For each e+ and e-, the distance between its track extrapolated from the 
tracker and its ECAL cluster position is minimized along η and φ directions

 Iterative corrections update the relative positions of ECAL modules, 
minimizing residuals and improving overall alignment

 Mechanical monitoring 
 Integrated strain gauges, temperature sensors, and laser trackers monitor 

deformations or thermal expansion in the support structures. 
 This complementary information can be incorporated into the alignment 

model, ensuring a stable and consistent detector geometry over long 
operation periods.
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 Crystal transparency and SiPM response calibration 
 The response of the ECAL is affected by variations in crystal transparency 

and silicon photomultiplier (SiPM) performance over time. 
 LED/laser injected to selected channel to monitor these effects in-situ?

 High-energy cosmic muons deposit near-minimum-ionizing signals (MIPs) 
in the ECAL, providing a continuous and natural source of calibration data, 
particularly during beam-off periods.

 By comparing the energy deposition of MIPs across different channels, 
relative response variations due to radiation damage, temperature 
fluctuations, or long-term aging can be identified and corrected.
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 Pedestal and noise scans
 Pedestal and noise levels are critical for ensuring optimal ECAL 

performance. 
 Periodic calibration runs without beam collisions or with random triggers 

measure each channel’s baseline (pedestal) and electronic noise. 
 These measurements are essential for:

 defining dynamic energy thresholds to suppress electronic noise while maintaining 
high sensitivity

 identifying and masking excessively noisy channels to prevent artifacts in physics 
data

 providing input for time-dependent noise corrections that improve energy 
reconstruction in low-energy events
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 Pulse shape and timing calibration 
 Precise timing and pulse shape reconstruction are crucial for optimal 

energy esolution, pileup mitigation, and event reconstruction. 

 Template-based pulse shape corrections 
 Each ECAL channel has a characteristic pulse shape, typically modeled 

using a reference pulse template derived from high-statistics calibration 
events. 

 Variations in pulse shape arise from differences in crystal light collection, 
SiPM response, and electronics timing offsets. 

 These effects are corrected using channel-specific calibration constants. A 
time-dependent correction accounts for aging effects, ensuring stable pulse 
shape reconstruction over long data-taking periods.

 Pileup and out-of-time corrections 
 Dedicated out-of-time pulse shape templates are used to identify and 

suppress contributions from previous or subsequent bunch crossings.
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 Timing synchronization and corrections 
 Inter-channel synchronization is essential to ensure consistent timing 

across the ECAL. 
 Timing offsets arise from differences in electronic signal propagation, clock 

synchronization, and temperature variations. 
 Cosmic ray muons to verify inter-channel synchronization over large detector 

regions 
 Well-identified prompt photons or electrons from Z → e+e− decays provide 

absolute time reference points.
 A final per-channel time alignment correction can be applied to ensure that 

all signals are synchronized within tens of picoseconds, enabling precision 
time-of-flight measurements and background rejection.
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 Time-dependent drift correction with E/p method
 Bhabha scattering and W/Z decays.

 Channel intercalibration, absolute scale calibration, stability monitoring
 π0→γγ and Z→e+e−

 Additional Cross-Checks:
 J/ψ→e+e− low-energy validation of the calibration scheme

 Dedicated Calibration Methods:
 LED Systems: Monitor selected/partial crystal transparency and SiPM

response in real time.
 Cosmic Muons (MIPs): Supply continuous, natural calibration for channel 

uniformity.
 Pedestal/Noise Scans: Regularly update baselines and optimize noise 

thresholds.
 Pulse Shape & Timing Calibration: correct pulse shape variations and 

timing drift to ensure stable performance.
 Track-Based Alignment and Mechanical Monitoring
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