

The 16th Workshop on QCD Phase Transition & Relativistic Heavy-Ion Physics, October 24-28, 2025, Guilin

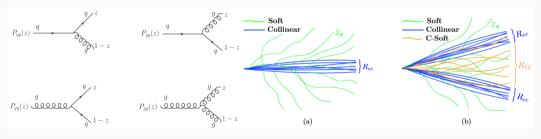
Weiyao Ke Central China Normal University

Jet physics and QCD

[Illustration of jet formation, taken from JPG47(2020)090501]

 $\mathcal{L}_{\mathrm{QCD}}$ is written in terms of quark & gluon fields

$$\mathcal{L} = \sum_{q} ar{q} \left[i \gamma^{\mu} (\partial_{\mu} + i g_{s} A_{\mu}^{a}) t^{a} - m_{q}
ight] ar{q} - rac{1}{4} F^{\mu
u, a} F_{\mu
u}^{a}$$

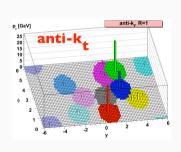

- QCD dynamics spans both perturbative and non-perturbative regimes.
- Jet produced at high-energy scales allows one to test QCD at $\alpha_s(\mu) \ll 1$, quark and gluon as quasi-particles (partons).
- Provide the hard probes of QGP in AA.

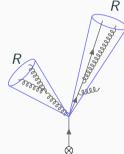
Collinear and soft fluctuations

ullet The perturbative regime of QCD contains almost massless quarks (u,d,s) & gluons:

$$dP_{g\to gg} \sim \frac{\alpha_s C_A}{2\pi} \frac{dz}{z(1-z)} \frac{d\mathbf{k}^2}{\mathbf{k}^2}$$
 enhanced **soft** and **collinear** radiations

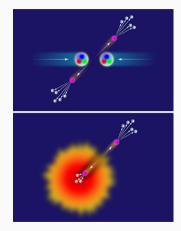
• Which quantum fluctuations are relevant is specific to observables


[LO QCD splitting functions]

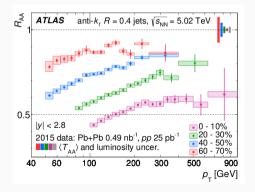

[Illustration from Larkoski, Moult, Neill, JHEP12(2014)009]

Inclusive jets in the vacuum

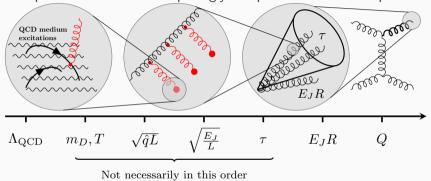
Jet cross-section perturbatively calculable using the factorization formula


$$\frac{d\sigma_{pp\to \rm jet}}{dydp_T} = \sum_{ijkX} \int dx_1 dx_2 f_{i/p}(x_1,\mu') f_{j/p}(x_2,\mu') \left. \frac{d\sigma_{ij\to kX}}{dydp_T'} \right|_{p_T' = \frac{p_T}{z}} \mathcal{J}_{k\to \rm jets}(z,R,\mu) \frac{dz}{z}$$

- A jet is characterized by a jet cone of radius parameter R.
- Out-of-cone radiations take away energy, or form new jets.
- Radiations in the cone do not change
 J at the same order, but changes
 substructure.

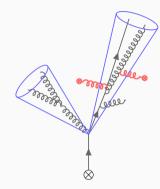

Jets in heavy ion collisions

[Figure from Cristina Manuel physics.aps.org/articles/v7/97]


Jet quenching: suppression of jet cross section in *AA* relative to *pp*.

"Simple" cause: interactions between energetic parton and the hot medium.

The full picture is complicated


A simple cause leads to a surprisingly complicated multi-scale problem.

Medium emergent scales versus Controllable jet scales Q, $E_J R$, τ .

Theory descriptions of jets in QGP

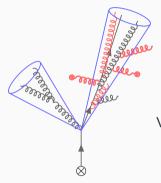
I. Collision rates of jet parton in medium

ullet Large angle + small-angle deflection with plasma screening

$$\begin{array}{ll} \frac{d\Gamma_R}{d\mathbf{q}^2} \xrightarrow{|q| \gtrsim T} \text{density} \times \text{cross-section in vacuum} \\ \frac{d\Gamma_R}{d\mathbf{q}^2} \xrightarrow{|q| < T} \alpha_s C_R T \int \frac{d\omega}{2\pi} \frac{\rho_L(\omega, \mathbf{q}, q_z)}{\omega} = \frac{\alpha_s C_R T m_D^2}{\mathbf{q}^2 (\mathbf{q}^2 + m_D^2)} \end{array}$$

[Aurenche, Gelis, Zaraket, JHEP0205(2002)043]

• A more useful characterization is jet transport parameter:


$$\hat{q}_R = \int d\mathbf{q}^2 \mathbf{q}^2 \frac{d\Gamma_R}{d\mathbf{q}^2}$$

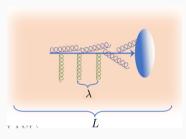
• Cause energy loss and transverse momentum broadening of each parton.

$$\mathcal{J}_{k \to \mathrm{jet}}(E, E_0, R) \to \mathcal{J}_{k \to \mathrm{jet}}(E + \Delta E, E_0, R)$$

More partons in jet \rightarrow larger ΔE . $\sigma_{AA \rightarrow jet}$ depends on emissions in the cone!

II. Medium-induced radiations

$$M_{qg}^*(x) \xrightarrow{\text{The background medium opposition}} M_{qg}(y) \xrightarrow{\tau_f \sim y - x}$$


Various approximations, numerical solution available. Generally:

- Induced radiations are softer with a typical range of k_T .
- Multiple interactions contribute coherently: the LPM effect.
- Introduces additional scales $\sqrt{\int \hat{q} d\tau}$, $\int \hat{q} \tau d\tau$, $\sqrt{E/\tau}$, etc.

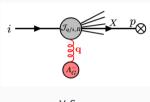
For observables:

- Induced radiations out of cone cause radiative jet energy loss.
- Induced radiations inside cone alters jet substructures.

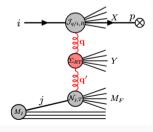
Summing multiple emissions

• At early times $\Delta t \sim \hbar/\Delta E \ll L$. Integrated out time, perform scale evolution using a modified DGLAP eq. [e.g., Deng, Wang PRC81(2010)024902]

$$\frac{\partial}{\partial \ln \mu^2} f_{\rm i}(\mu, zE) = \left[\frac{\alpha_s}{2\pi} P_{ij}^{\rm vac}(z) + \frac{dN_{ij}^{\rm med}}{dz} \right] \otimes f_{\rm j}(\mu, zE)$$

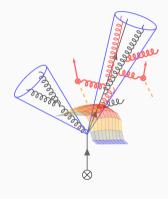

Resum $\left(\alpha_s \frac{\hat{q}_0 L}{E/L} \ln \frac{E/\tau}{m_D^2} \partial_z\right)^n f(zE)$ [Ke, Vitev, PLB854(2024)138751]

• At late times $\Delta E \sim \hbar/\Delta t \ll Q$. Integrate out energy uncertainty, perform time evolution with kinetic equations [LBT, MARTINI, LIDO, JetMed, etc]. Resum terms $\propto t$.


Linearized Boltzmann equation: $p^{\mu}\partial_{\mu}f_{\text{hard}}(t,x,p) = \mathcal{C}_{2\to 2}[f_{\text{hard}}] + \mathcal{C}_{1\to 2}[f_{\text{hard}}]$

How to perform both & interfacing? Require a more serious theory investigation.

What types of quantum fluctuations are important? Specific to observables



- ✓ Medium probed by energy-loss sensitive observables:
 - Medium quantum fluctuations are less important.
 - $\Delta E_{\rm rad} \propto \alpha_s \int \hat{q}_0 \tau d\tau$
- \triangleleft Medium probed by p_T -broadening sensitive observables:
 - Fluctuations in exchanged gluon & medium are important.
 - Collision kernel further improved by BFKL equation, or via \hat{q} renormalization $\hat{q} \sim \hat{q}_0 (L/L_0)^\gamma$ [Blaizot, Mehtar-Tani, Wu (2013-2015), V Vaidya, B. Singh, (2021-2024), Ke, Terry, Vitev (2025)]
- ★ In addition to MC studies, it is necessary to use effective field theory to decide what types of fluctuations are important.

III. Jets induced medium response

• Jet recoils medium parton to semi-hard partons, which continue to propagate and diffuses in the medium:

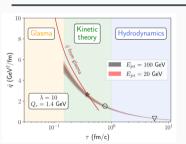
$$\frac{df_{\text{semi hard}}}{dt} = \int W(p, p'; T)[f(p', x) - f(p, x)]dp'$$

A quasi-particle type of response.

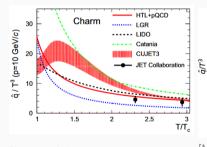
• Collective response to jet energy-momentum deposition:

$$\partial_{\mu}(T^{\mu\nu} + \delta T^{\mu\nu}) = \delta J^{\nu}$$
, [Chen, Cao, Luo, Pang, Wang, CoLBT]

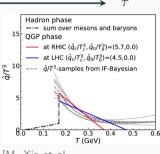
Contains both sound and diffusive modes .


For observables: correlated soft particle production from the bulk, $\propto R^2$.

Jet phenomenology in HIC

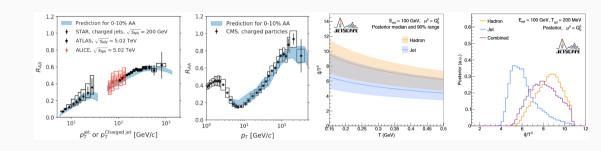

I. Jet transport parameter & nature of the medium

From coherent fields to highlyoccupied gluon system Near local thermal distributions of quarks & gluons


Finite-*T* hadron system, from dense to dilute

[K. Boguslavski et al., PLB850(2024)138525]

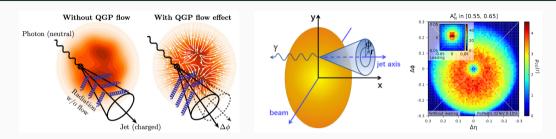
[(charm \hat{q}) S. Li et al. EPJC81(2021)536]



[M. Xie et al.

arXiv:2409.18773]

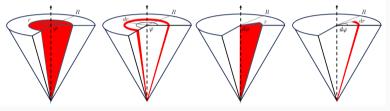
I. Jet transport parameter & nature of the medium


[Ke. Wang JHEP05(2021)041]

- ullet Jets and hadron suppression prefers slightly different \hat{q} . Also found in other transport models.
- May suggest other effects to be included in the shower simulation, e.g., color (de)coherence [Mehtar-Tani, Pablos, Tywoniuk PRL127(2021)252301].

[JETSCAPE PRC111(2025)054913]

II. Anisotropic jet substructures

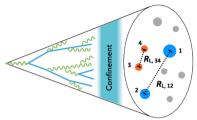


Anisotropic jet shape due to flow and density gradient from transport mdoel [Y.-X. Xiao, Y. He, L.-G. Pang, X.-N. Wang, Phys.Rev.C 109 (2024) 5, 054906]

First-principle jet coupled to gradient/flow: [Sadofyev, Sievert, Vitev PRD104(2021)094044]. Attract great attention in the past years [Fu, Casalderrey-Solana, Wang PRD107(2023)054038, Barata, Sadofyev, Wang PRD107(2023)L051503, Barata, Mayo López, Sadofyev, Salgado, PRD108(2023)034018.] Tan Luo's Talk on *Three-dimensional Coupling between Jet and Flow in HIC*.

II. Anisotropic jet substructures

Progress in the factorization calculation of anisotropic jet shape and jet angularity in vacuum using SCET [Ke, Terry, Vitev, JHEP07 (2025)097]. Should be generalized to AA.



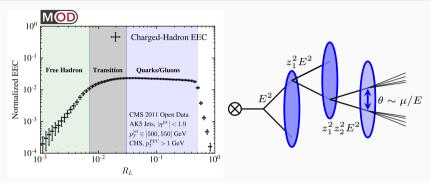
It is also found that Winner-Take-All jet axis greatly simplify such anisotropic calculation.

Anisotropic jet angularity

$$\tau_{\phi}^{\mathsf{a}} = \frac{1}{p_{\mathsf{T}, \mathrm{jet}}} \sum_{i \in J_{\phi}} p_{\mathsf{T}}^{i} |\Delta r_{i\mathsf{J}}|^{2-\mathsf{a}}$$

III. Energy correlators

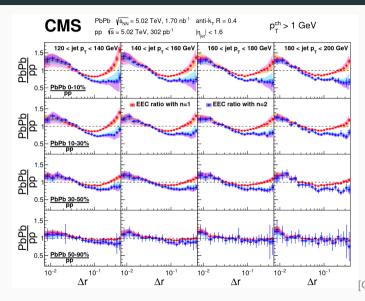
[An illustration by W. Fan.]


An energy weighted, multi-angular distances differential cross section

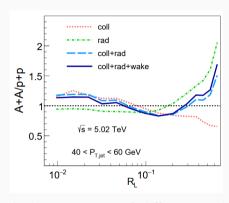
For two-point correlator:
$$\frac{d\Sigma_2}{d\theta^2} = \frac{1}{N_{\rm jet}} \sum_{\rm jet} \sum_{ij \in \rm jet} \delta(\theta^2 - \theta_{ij}^2) \frac{E_i^n}{E_{\rm jet}^n} \frac{E_j^n}{E_{\rm jet}^n}$$

and in theory $\Sigma_N = \langle \hat{\mathcal{E}}_1^n \hat{\mathcal{E}}_2^n \cdots \hat{\mathcal{E}}_N^n \rangle$ [Hofman, Maldacena, JHEP05(2008)012]

$$\hat{\mathcal{E}}_n = \lim_{r \to \infty} \int_0^\infty dt \, r^2 n^i \, \hat{T}_{0i}(t, r\vec{n}) \, .$$

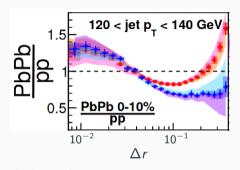

E2C in pp

For asymptotics high-E jets in vacuum, EEC separates perturbative, hadronic, and uncorrelated regimes. The perturbative regime probes moments of QCD splitting


$$\theta^2 \frac{d\Sigma_2}{d\theta^2} \sim \frac{\alpha_s^{\mathrm{fix}}}{2\pi} \frac{1}{\theta^{2\gamma(3)}}, \quad \gamma_{ji}(N) = -\frac{\alpha_s}{2\pi} \int_0^1 dx x^{N-1} [P_{ji}(x)]_+$$

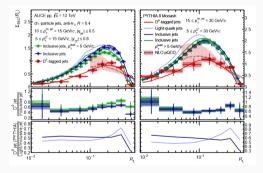
In the medium, things get complicated again

Combination of many medium modification mechanisms...

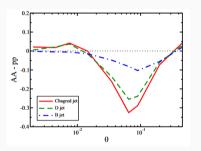

- Scales of induced radiations imprints in EEC [Andres, Dominguez, Kunnawalkam Elayavalli, Holguin, Marquet, Moult PRL130(2023)262301].
- Energy loss differences among quarks & gluon jets. [Barata et al JHEP11(2024)060, Chen et al. 2409.13996].
- Medium responses affects N-point correlator via enhanced low-momentum particle production. [Bossi, Kudinoor, Moult, Pablos, Rai, Rajagopal JHEP12(2024)073].
- Sensitivity to medium screening mass, radiation, medium response [Yang, He, Moult, Wang, PRL132(1024)011901]

A decomposition of different medium effects. [Chen, Xu, Shen, Dai, Zhang, Wang 2409.13996]

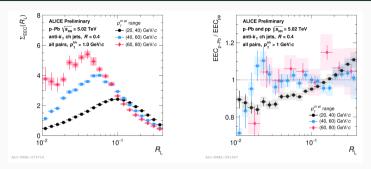
Combination of many medium modification mechanisms...


- Scales of induced radiations imprints in EEC [Andres, Dominguez, Kunnawalkam Elayavalli, Holguin, Marquet, Moult PRL130(2023)262301].
- Energy loss differences among quarks & gluon jets. [Barata et al JHEP11(2024)060, Chen et al. 2409.13996].
- Medium responses affects N-point correlator via enhanced low-momentum particle production. [Bossi, Kudinoor, Moult, Pablos, Rai, Rajagopal JHEP12(2024)073].
- Sensitivity to medium screening mass, radiation, medium response [Yang, He, Moult, Wang, PRL132(1024)011901]

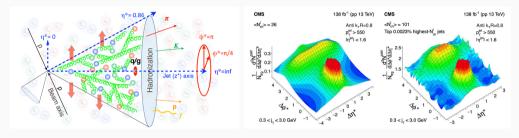
 $\langle \hat{\mathcal{E}}_1^n \hat{\mathcal{E}}_2^n \cdots \hat{\mathcal{E}}_N^n \rangle$. Tuning weighting power \mathcal{E}^n , angular distances, order of correlation, may disentangle them.


EEC of Heavy flavor jets: investigate "dead cone" in the pp and AA

$$\begin{split} P_{qq}(z)\frac{\mathbf{k}}{\mathbf{k}^{2}}\cdot\frac{\mathbf{k}}{\mathbf{k}^{2}} &\rightarrow P_{qq}(z)\frac{\mathbf{k}}{\mathbf{k}^{2}+z^{2}M^{2}}\cdot\frac{\mathbf{k}}{\mathbf{k}^{2}+z^{2}M^{2}}\\ &+z^{3}\frac{M}{\mathbf{k}^{2}+z^{2}M^{2}}\cdot\frac{M}{\mathbf{k}^{2}+z^{2}M^{2}} \end{split}$$

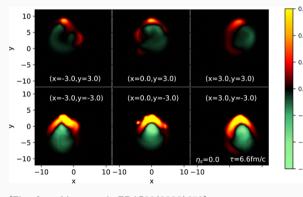

 D^0 jets E2C in pp [ALICE CERN-EP-2025-082]

$$P_{qq}(z)\mathcal{C}\left[\frac{\mathbf{k}}{\mathbf{k}^{2}+z^{2}M^{2}}\right]\cdot\frac{\mathbf{k}}{\mathbf{k}^{2}+z^{2}M^{2}}$$
$$+z^{3}\mathcal{C}\left[\frac{M}{\mathbf{k}^{2}+z^{2}M^{2}}\right]\cdot\frac{M}{\mathbf{k}^{2}+z^{2}M^{2}}$$


Predicted heavy jet E2C in AA. Higher-twist formula + LBT[Xing, Cao, Qin, Wang, PRL134(2025)052301] May be used to differentiate theories.

The puzzling small systems: E2C modifications in *p*-Pb

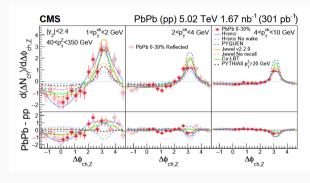
- Medium effects can also modify the non-perturbative regime (a medium TMD function) [Barata, Kang, Mayo López, Penttala, PRL134(2025)251903].
- Cold nuclear matter higher twist effects [Fu, Müller, Sirimanna, PRL135(2025)112302].
- ullet Still difficult to explain the observed jet $p_{\mathcal{T}}$ dependence.
- Predict E2C in OO: Li Lin's poster *Energy correlators from large to small systems*.


New thoughts: study jet substructures versus its internal multiplicities

[CMS Phys.Rev.Lett. 133 (2024) 14, 142301]

- Study jet substructure as a function of its internal multiplicity in *pp* and *AA*.
- Does it suggest final-state interaction or collectivity? [Zhao, Lin, Wang, 2401.13137].
- Talk by Xiang-Pan Duan: Multiplicity distributions in QCD jets and Jet Topics.
- Talk by Pi Duan: Differentiating EEC with Charged Particle Multiplicity in a jet.

IV. Medium response: Mach cone versus diffusion wake

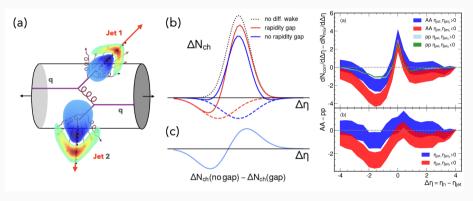

[Fig. from Yang et al. EPJC83(2023)652]

Medium response to jet perturbations $e^{-i(\omega t - kx)}$

- Sound channel: $\omega = \pm c_s k i \Gamma_L k^2$
- Diffusion channel: $\omega = -i\Gamma_T k^2$

CMS find evidence of the negative diffusion wake. Both hydro model or particle recoil model predicts the depletion.

IV. Medium response: Mach cone versus diffusion wake

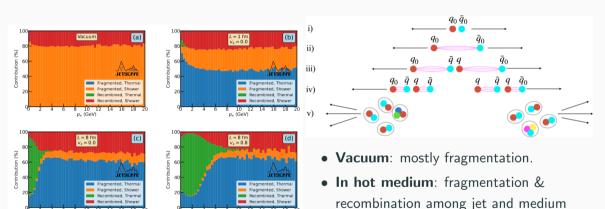

[CMS 2507.09307, Z-boson+jet events]

Medium response to jet perturbations $e^{-i(\omega t - kx)}$

- Sound channel: $\omega = \pm c_s k i \Gamma_L k^2$
- Diffusion channel: $\omega = -i\Gamma_T k^2$

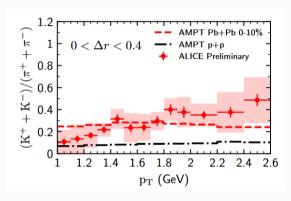
CMS find evidence of the negative diffusion wake. Both hydro model or particle recoil model predicts the depletion.

New ideas to search jet-induced medium response in di-jet events



Use jets with η gap to avoid interferences of medium response among the two jets [Z.

Yang, and X.-N. Wang, Phys.Rev.Lett. 135 (2025) 7, 072302]

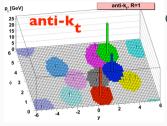

V. Understanding hadronization mechanisms in medium

p, (GeV)

partons [JETSCAPE 2501.16482].

Hadron chemistry of jets in medium

[Luo, Cao, Qin, PLB866(2025)139520]


- Recombination between jet and medium partons changes the hadron chemistry in the jet cone.
- Predicted strangeness enhancement is consistent with ALICE prelim data.
- Serve as another probe of medium response.

Summary

- Jet modifications in QGP are caused by jet-medium multiple interactions.
- However, it turns out to be a surprisingly complicated multiple problem.
- We have seen a boom in new tools and observables
 - The energy correlators, anisotropic observables, and many more.
 - Developments in MC models with more detailed physics, in-medium EFT framework.
- Use versatile jet observables and controllable scales to understand:
 - The emergent scales in medium-modified parton shower.
 - The jet-medium interaction strength and its scale dependence.
 - Identify the medium response and confirm its collective nature.
 - Understand hadronization from pp to AA.

Jet in practice

[Cacciari, Salam, Soyez, EPJC72(2012)1896]

Cluster "close" pairs of final-state particles into a jet of angular radius

R:	Algorithms	Metric d_{ij}	$d_{i-\mathrm{beam}}$	Key Feature
	k_T	$ \min(p_{Ti}^2, p_{Tj}^2) \frac{\Delta R_{ij}^2}{R^2} $	p_{Ti}^2	Clusters soft first
	anti- k_T	$ \min(p_{Ti}^{-2}, p_{Tj}^{-2}) \frac{\Delta R_{ij}^2}{R^2} $	p_{Ti}^{-2}	Cone-like jets
	CA	$\frac{\Delta R_{ij}^2}{R^2}$	1	Geometry only

Angular distance is $\Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$

For the talk: a jet is bunch of particles in a cone R. R makes a distinction for radiations inside/outside the cone.