

CONSTRAINING NUCLEAR SYMMETRY ENERGY WITH RELATIVISTIC ISOBAR COLLISIONS

HAOJIE XU (徐浩洁)

HUZHOU UNIVERSITY(湖州师范学院)

THE 16TH WORKSHOP ON QCD PHASE TRANSITION AND RELATIVISTIC HEAVY-ION PHYSICS 24-28TH OCTOBER, 2025, GUILIN

Nuclear symmetry energy

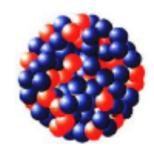
In nuclear EOS, the energy per nucleon

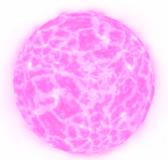
$$E(\rho, \delta) \equiv E(\rho, 0) + \frac{E_{\text{sym}}}{\delta^2} + \dots$$

Where ρ is density, and $\delta \equiv (\rho_n - \rho_p)/\rho$. Expanded around ρ_0 (or sub-saturation density $\rho_c \approx 2\rho_0/3$)

$$L(\rho_0) \equiv 3\rho_0 \left(\frac{dE_{\text{sym}}}{d\rho}\right)_{\rho_0} \qquad L(\rho_c) \equiv 3\rho_c \left(\frac{dE_{\text{sym}}}{d\rho}\right)_{\rho_c}$$

- ullet Stiff symmetry energy: E_{sym} increase rapidity with density, large L
- \bullet Soft symmetry energy: E_{sym} increase slowly/saturate at high density, small L





Key to a unified description of nuclear physics, from the smallest to the largest scales.

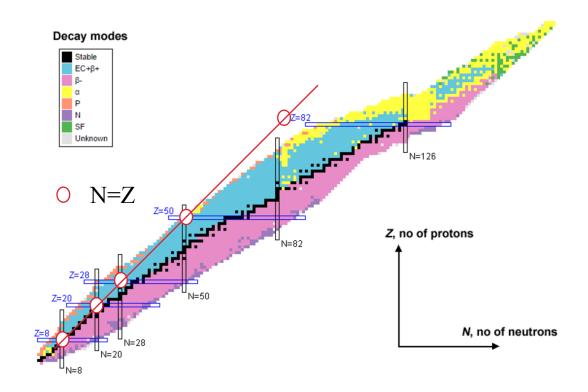
Nuclear symmetry energy in nucleus

The binding energy

$$B(A, Z) = a_V A + a_S A^{2/3} + a_C \frac{Z(Z-1)}{A^{1/3}} + a_A \frac{(N-Z)^2}{A}$$

- For light nuclei, the Coulomb repulsion is weak, $N \approx Z$
- For heavy nuclei, Coulomb repulsion is very strong, N > Z
 - More strong force against Coulomb force
 - Penalty from symmetry energy
 - The competition between the instability from Coulomb and symmetry energy.

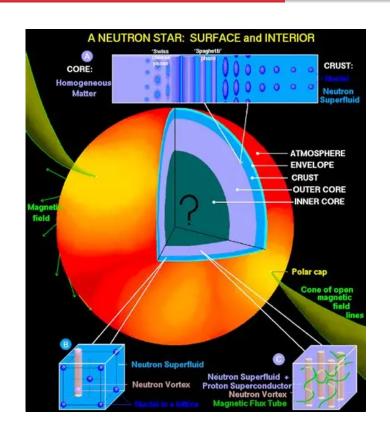
More neutrons: unstable, symmetry energy

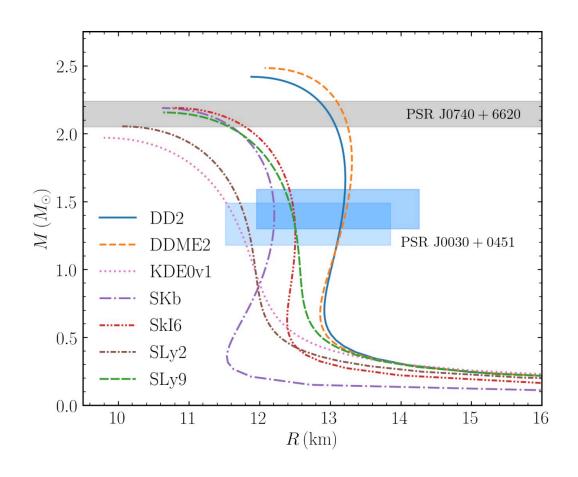


Any stable nucleus with pure neutron clusters? NO

BUT we can find it in our Universe, NEUTRON STAR

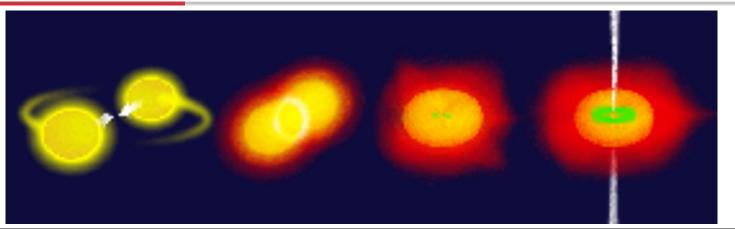
Nuclear symmetry energy in neutron star



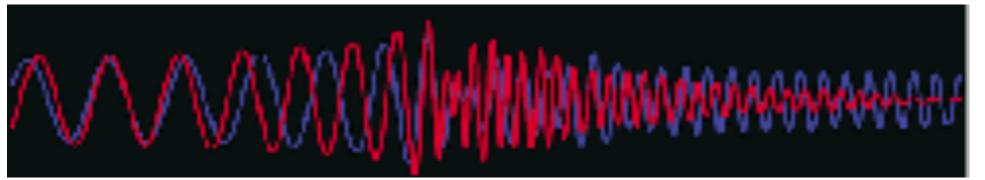


- $\, \bullet \,$ Stiff symmetry energy: large L , more pressure from $E_{\rm sym}$ against gravity, large size
- ullet Soft symmetry energy: small L, no enough pressure from E_{sym} against gravity, small size

E_{sym} measurement with neutron star (GW170817)



Neutron star merge



Tidal deformation

PRL **119,** 161101 (2017)

Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

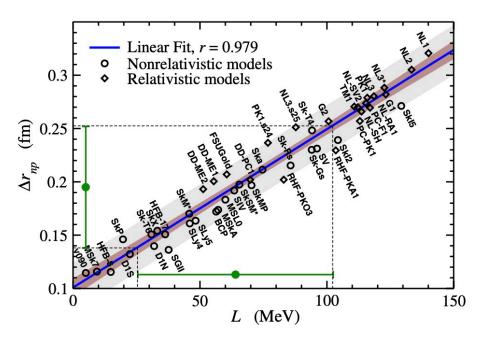
week ending 20 OCTOBER 2017

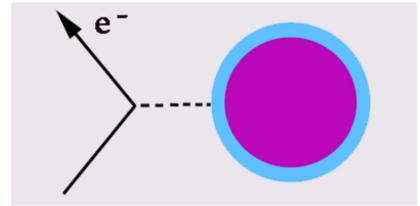
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

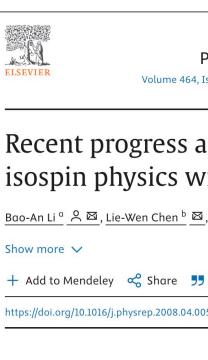
B. P. Abbott *et al.**
(LIGO Scientific Collaboration and Virgo Collaboration)

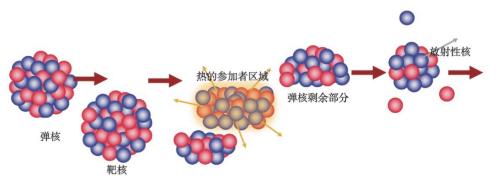
9853 citations

E_{sym} measurement with heavy ion collisions



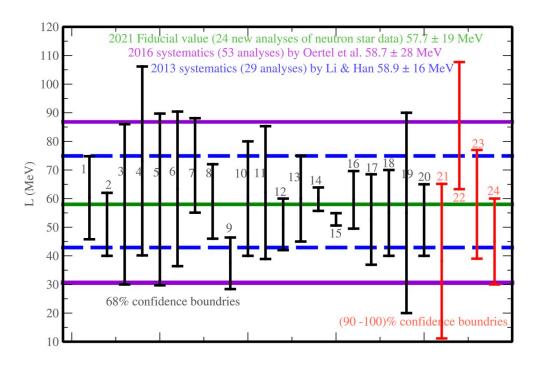




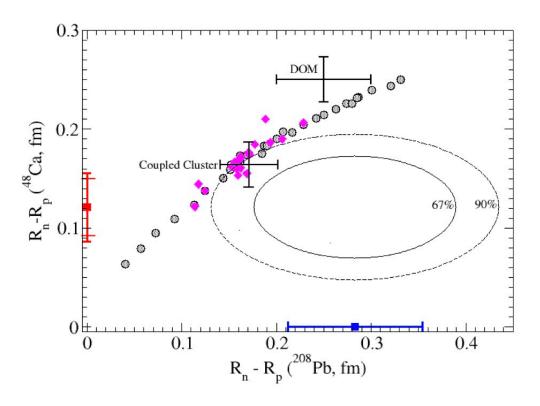


Nuclear symmetry energy on the earth

B. Li, et.al, Universe 7, 182 (2021)

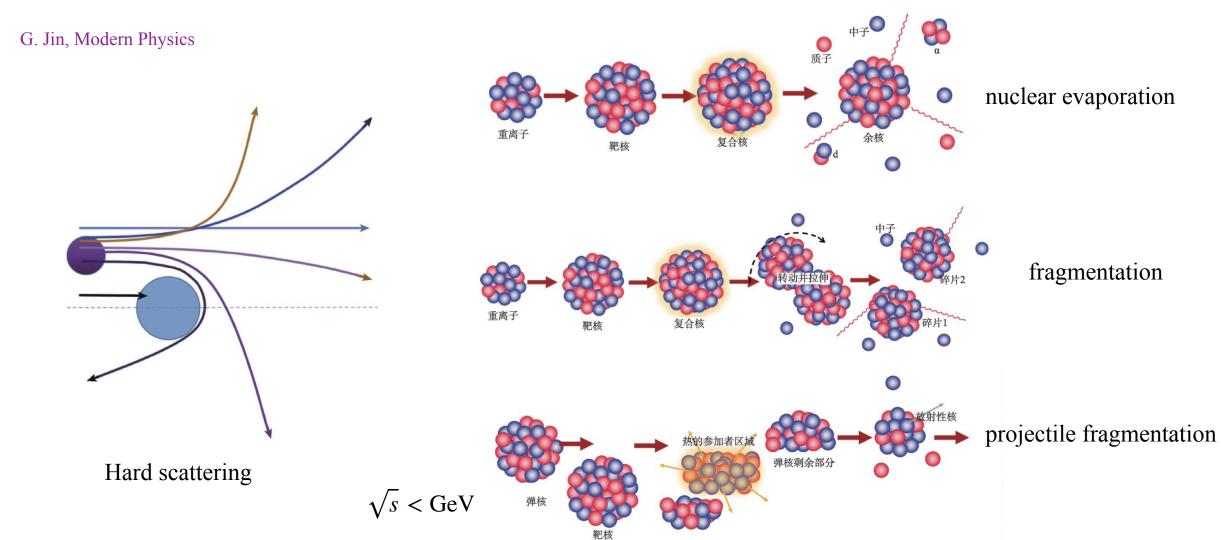


CREX Collaboration, PRL129, 042501 (2022)



Symmetry energy is transitionally measured by low energy nuclear experiment. Over many decades, the issue is still not fully settled; e.g. world average L parameter is about 50 MeV, PREX electroweak measurement favors 100 MeV whereas CREX favors 30 MeV.

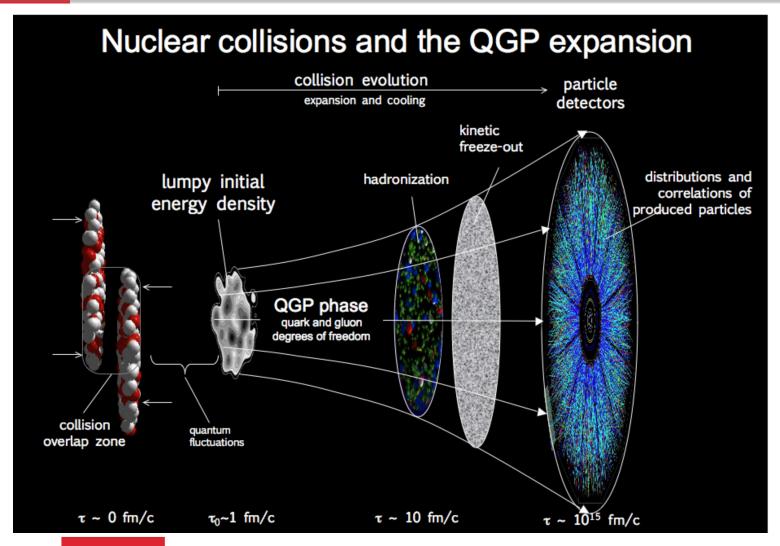
HIC vs relativistic HIC



Relativistic heavy ion collisions

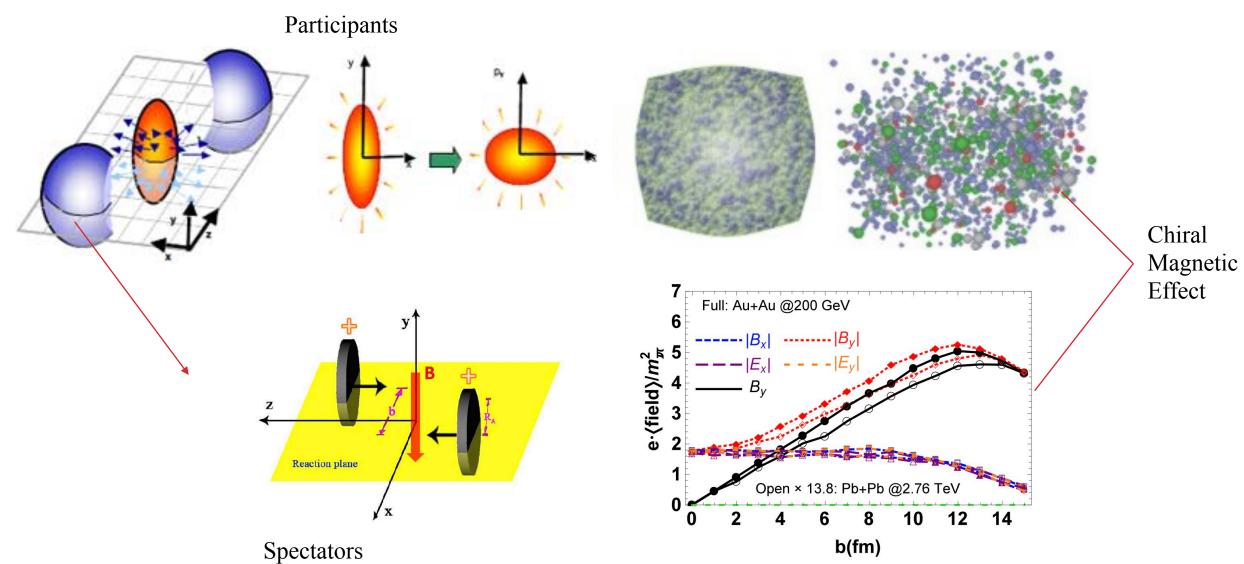
The "Little Bang"

$$\sqrt{s} = 100 \text{GeV} \sim \text{TeV}$$



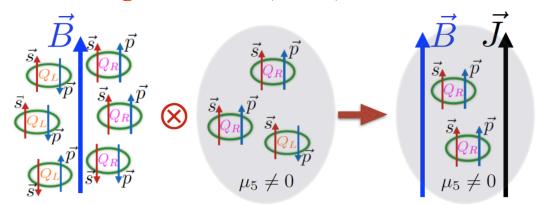
Yoctosecond (10⁻²⁴ s) 幺秒

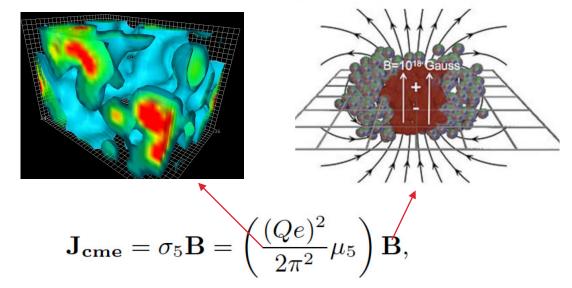
Relativistic heavy ion collisions



Relativistic isobaric collisions and chiral magnetic effect

Chiral magnetic effect (CME)

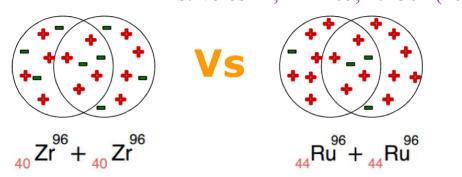




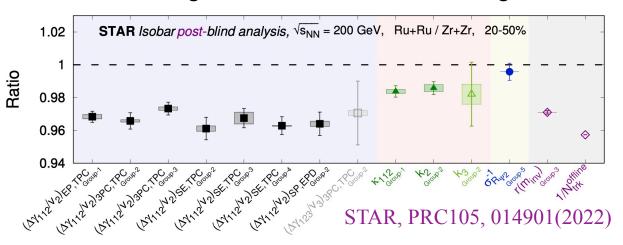
D. Kharzeev, et. al., PPNP88, 1(2016)

The isobar collisions was proposed to measure the chiral magnetic effect.

S. Voloshin, PRL105, 172301 (2010)

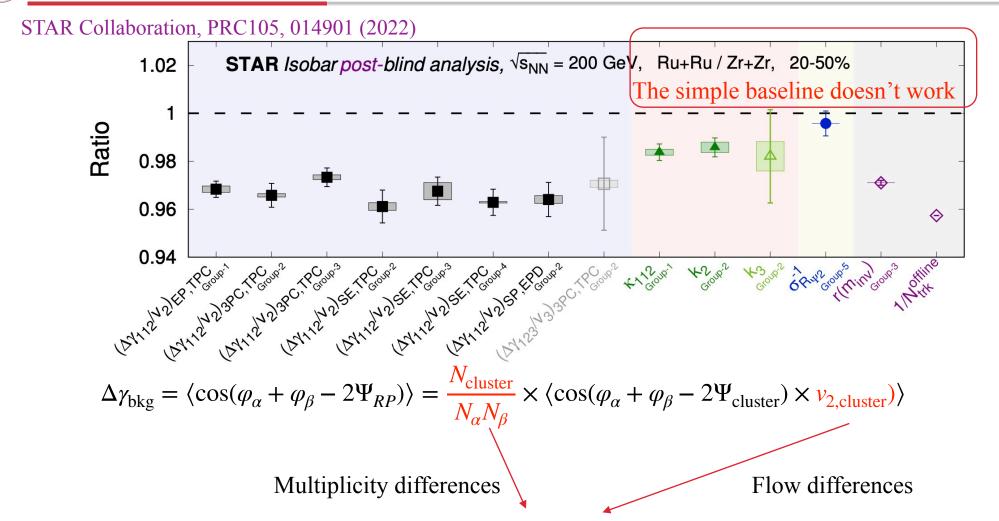


- Same background
- Different magnetic field => different CME signals



Backgrounds are not identical!!!

Isobar structures are important for the CME search



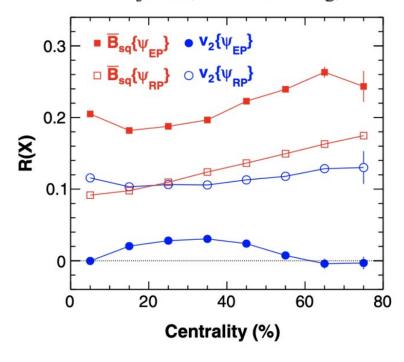
The multiplicity and v2 differences from isobar structure are crucial for the CME search in the isobar collisions at RHIC

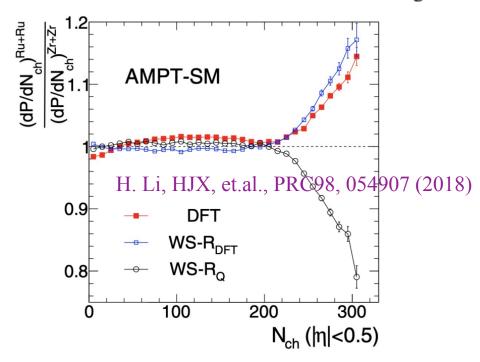
PHYSICAL REVIEW LETTERS 121, 022301 (2018)

Instead of WS densities, we use the nuclear densities obtained from density functional theory calculations

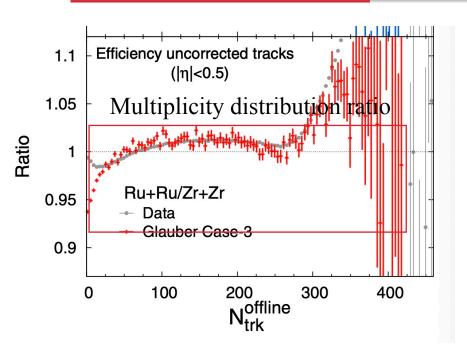
Importance of Isobar Density Distributions on the Chiral Magnetic Effect Search

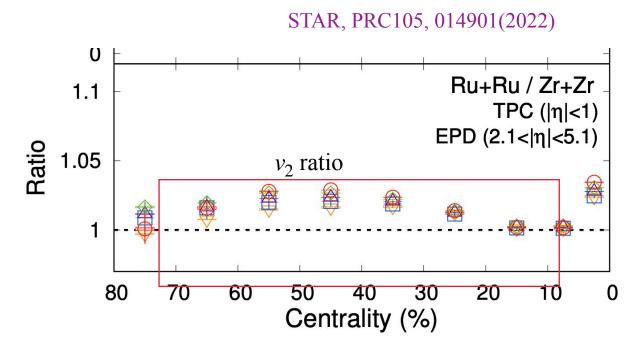
Hao-jie Xu,¹ Xiaobao Wang,¹ Hanlin Li,² Jie Zhao,³ Zi-Wei Lin.^{4,5} Caiwan Shen.¹ and Fuqiang Wang^{1,3,*}

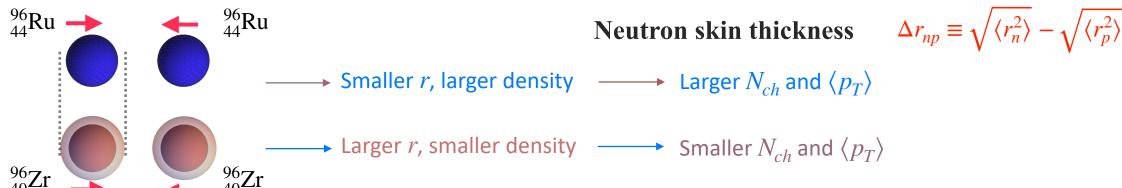




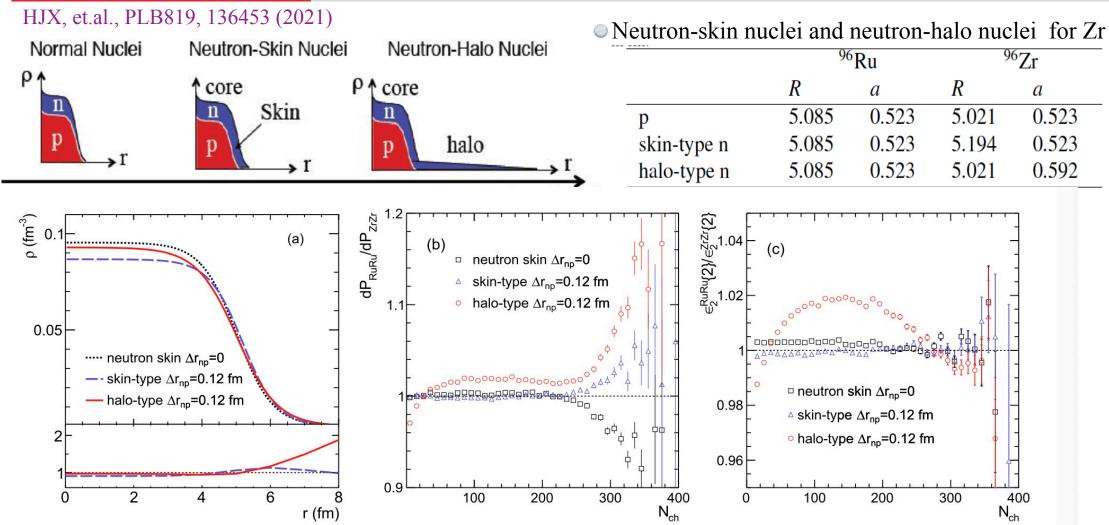
DFT predictions are verified by STAR data







Determine the neutron skin type by STAR data



The shapes of the Ru+Ru/Zr+Zr ratios of the multiplicity and eccentricity in mid-central collisions can further distinguish between skin-type and halo-type neutron densities.

Neutron skin and nuclear symmetry energy

Z. Zhang, PRC94, 064326(2016)

H. Li, HJX, et.al., PRL125, 222301(2020)

SHF: Standard Skyrme-Hartree-Fock (SHF) model

$$v_{i,j} = t_0(1+x_0P_\sigma)\delta(\boldsymbol{r}) + \frac{1}{6}t_3(1+x_3P_\sigma)\rho^\alpha(\boldsymbol{R})\delta(\boldsymbol{r})$$

$$+ \frac{1}{2}t_1(1+x_1P_\sigma)[K'^2\delta(\boldsymbol{r}) + \delta(\boldsymbol{r})K^2]$$

$$+ t_2(1+x_2P_\sigma)\boldsymbol{K'}\cdot\delta(\boldsymbol{r})\boldsymbol{K}$$

$$+ \frac{1}{2}t_4(1 + x_4P_{\sigma})[K'^2\delta(\boldsymbol{r})\rho(\boldsymbol{R}) + \rho(\boldsymbol{R})\delta(\boldsymbol{r})K^2]$$

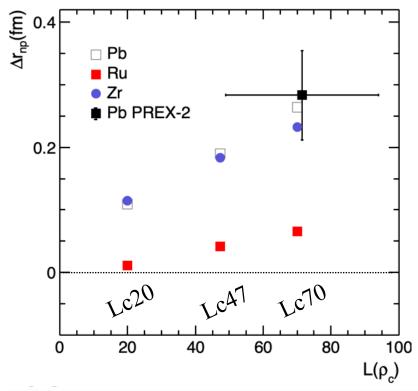
$$+ t_5(1 + x_5P_{\sigma})\boldsymbol{K}' \cdot \rho(\boldsymbol{R})\delta(\boldsymbol{r})\boldsymbol{K} \quad \text{Extended}$$

$$+ iW_0(\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_i) \cdot [\boldsymbol{K}' \times \delta(\boldsymbol{r})\boldsymbol{K}], \tag{4}$$

$$E(\rho, \delta) = E_0(\rho) + E_{\text{sym}}(\rho)\delta^2 + O(\delta^4)$$

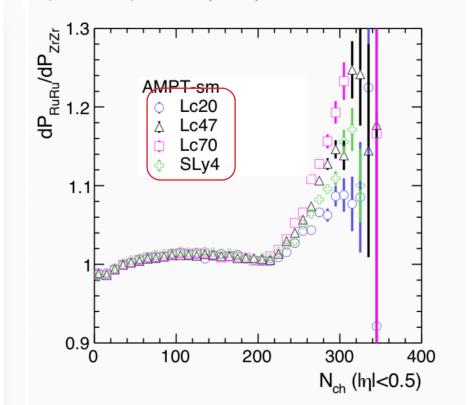
$$\rho = \rho_n + \rho_p; \ \delta = \frac{\rho_n - \rho_p}{\rho}$$

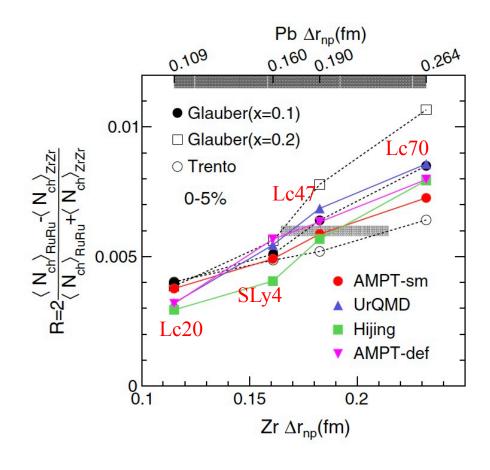
$$L(\rho_c) = 3\rho_c \left[\frac{dE_{\text{sym}}(\rho)}{d\rho} \right]_{\rho = \rho_c}; \ \rho_c \simeq 0.11 \text{fm}^{-3}$$



				$^{96}\mathrm{Zr}$			⁹⁶ Ru		²⁰⁸ Pb
	$L(\rho_c)$	$L(\rho_0)$	r_n	r_p	$\Delta r_{ m np}$	r_n	r_p	$\Delta r_{ m np}$	$\Delta r_{ m np}$
Lc20	20	13.1	4.386	4.27	0.115	4.327	4.316	0.011	0.109
Lc47	47.3	55.7	4.449	4.267	0.183	4.360	4.319	0.042	0.190
Lc70	70	90.0	4.494	4.262	0.232	4.385	4.32	0.066	0.264
SLy4	42.7	46.0	4.432	4.271	0.161	4.356	4.327	0.030	0.160

Method I: multiplicity distribution ratio

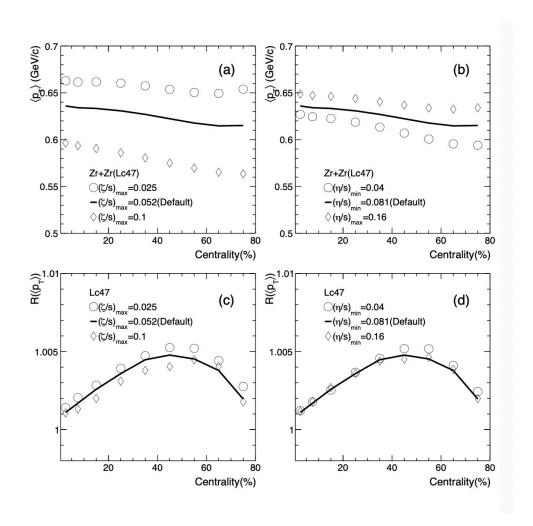




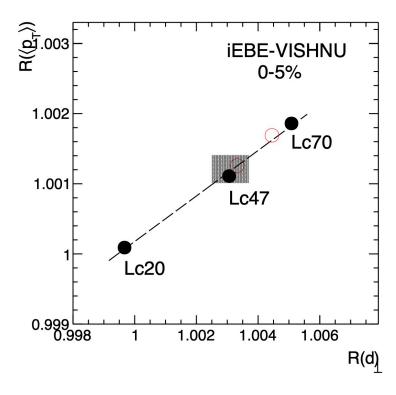
- The ratio of N_{ch} distributions highlight the differences
- To quantify the differences, we use the R observable of N_{ch} at top 5% centrality.
- R is a relative measure, much of experimental effects cancel

Method II: mean p_T ratio

HJX, et.al., PRC108, L011902 (2023)



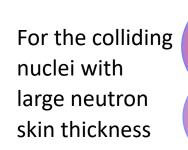
$$R(\langle p_T \rangle) \propto R(d_\perp) \propto 1/R(\langle \sqrt{r^2}) \rangle$$



The $R(\langle p_T \rangle)$ is inversely proportional to nuclear size ratio in most central collisions. Hao-jie Xu

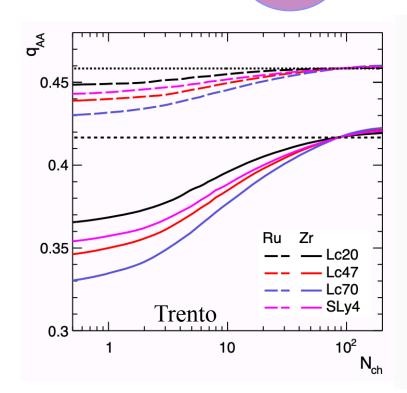
Method III: net-charge ratio in very peripheral collisions

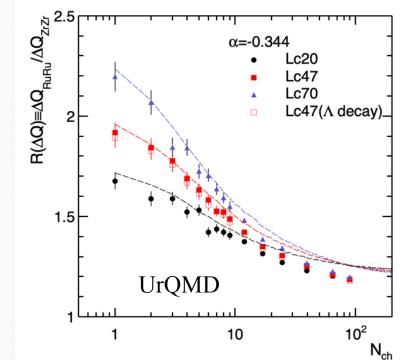
HJX, et.al., PRC105, L011901 (2022)



more n+n collisions at most peripheral collisions

Less participant charges, thus less final net-charges





The curves are calculated by superimposition assumption

$$R(\Delta Q) = \frac{q_{\text{RuRu}} + \alpha/(1 - \alpha)}{q_{\text{ZrZr}} + \alpha/(1 - \alpha)}$$

where $q_{\rm RuRu/ZrZr}$ are the fraction of protons among the participant nucleons, obtained by the Trento model.

 α is the ΔQ ratio in nn to pp interaction:

Pytha: $\alpha = -0.352$

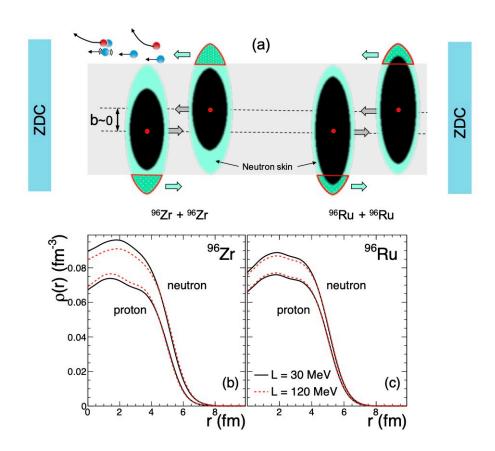
Hijing: $\alpha = -0.389$

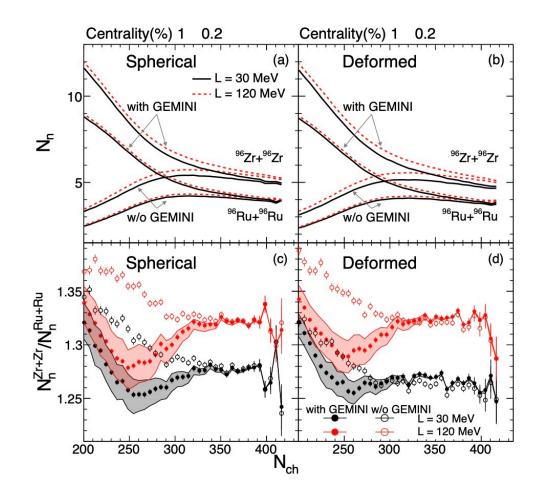
UrQMD: $\alpha = -0.344$

Hao-jie Xu

Method IV: spectator neutrons in ultracentral collisions

L. Liu, et.al, PLB, 834, 137441(2022)





The yield ratio of free spectator neutrons is a clean probe of the neutron-skin thickness

Compare to world wide data

HJX(STAR), QM2022

State-of-the-art spherical DFT with eSHF nuclear potential

Zhang, Chen, PRC94, 064326 (2016)

• Multiplicity ratio:

$$L(\rho_c) = 53.8 \pm 1.7 \pm 7.8 \text{ MeV}$$

 $L(\rho) = 65.4 \pm 2.1 \pm 12.1 \text{ MeV}$

$$\Delta r_{\rm np,Zr} = 0.195 \pm 0.019 \text{ fm}$$

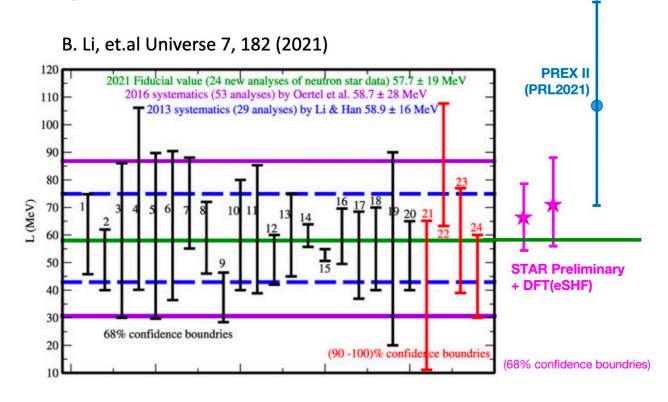
$$\Delta r_{\rm np,Ru} = 0.051 \pm 0.009 \text{ fm}$$

$$L(\rho_c) = 56.8 \pm 0.4 \pm 10.4 \text{ MeV}$$

$$L(\rho) = 69.8 \pm 0.7 \pm 16.0 \text{ MeV}$$

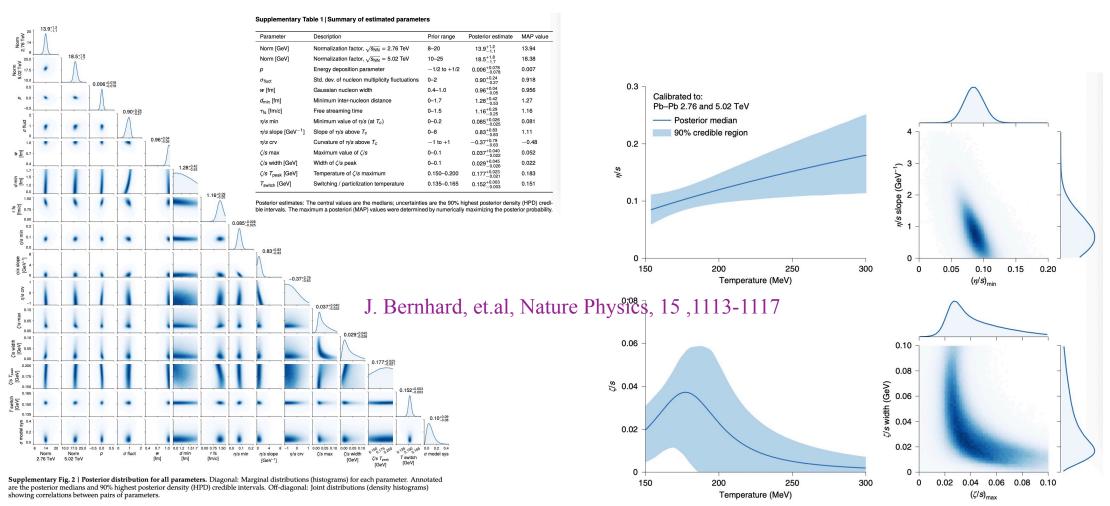
$$\Delta r_{\rm np,Zr} = 0.202 \pm 0.024 \text{ fm}$$

$$\Delta r_{\rm np,Ru} = 0.052 \pm 0.012 \text{ fm}$$



Consistent with world wide data with good precision

Relativistic hydrodynamic model



Proceed with extreme caution when extracting anything from the single collision system!

- The nuclear symmetry energy is important for both finite nuclei and neutron star
- CME background in relativistic isobar collisions depend on nuclear symmetry energy
- Unconventional way to probe the neutron skin and symmetry energy

Thank you for your attention!

Haojie Xu(徐浩洁)

Huzhou University(湖州师范学院)

