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Introduction

Understanding the thermodynamics of QCD at finite temperature is a key goal in high-energy
nuclear physics.

Around the crossover transition (Tc ∼ 150–170 MeV), different degrees of freedom are
liberated:

Quarks: dominate entropy and particle number.
Gluons: dominate pressure and energy density.

Disentangling chromo-electric and chromo-magnetic gluons is crucial for understanding the
QCD medium.
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Introduction

At finite temperature, the Euclidean O(4) symmetry is reduced to spatial O(3):

Longitudinal (electric) and transverse (magnetic) gluons become physically distinct.

In the high-T limit, perturbative and effective field theory approaches suggest:

me ∼ gT , mm ∼ g2T

Magnetic screening masses are absent at any finite order in perturbation theory; they arise
from non-perturbative dynamics and are captured by dimensionally reduced effective theories
or lattice QCD.
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Introduction

Top-Down Approach

Effective Field Theory

Gluonic Masses

Bottom-Up Approach

Lattice QCD Data

Mass Functions
me(T ), mm(T )

Essence: Extracting gluon properties directly from thermodynamic data without specifying a
Lagrangian — a data-driven inverse problem.
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Quasiparticle Model: Thermodynamics with Gluon Masses

In the Quasiparticle model (QPM), gluons are treated as massive bosons with effective
thermal masses me(T ) and mm(T ).
The total thermodynamic potential is:

lnZ (T ) = lnZe(T ) + lnZm(T )

Each follows Bose-Einstein statistics:

lnZi (T ) = −diV

2π2

∫ ∞

0

dp p2 ln

(
1− e−

√
p2+m2

i
(T )

T

)
Key observables computed:

P(T ), ϵ(T ), ∆(T ) =
ϵ− 3P

T 4

Degeneracy

de = 8, dm = 16 (chromo-electric and -magnetic gluons)
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Thermal Mass vs. Screening Mass

Thermal Mass

Arises from medium interactions and enters the energy-momentum dispersion relation

Related to the pole of the gluon propagator: E 2 = p2 +m2
thermal

Governs real-time dynamics and transport properties

Screening Mass

Characterizes exponential decay of spatial two-point correlations

Defined from the asymptotic behavior: ⟨A(x)A(0)⟩ ∼ e−mscreening|x|

Probed in lattice QCD via Polyakov loop correlators

Does not necessarily coincide with thermal mass, especially near Tc

These two mass definitions reflect different physical aspects of the medium
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Framework
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Neural Network Structure and Physics-Informed Regularization

Each gluonic mass mi (T ) is modeled by a separate
ResNet:

ResNet structure helps alleviate the vanishing
gradient problem in deep networks.
Softplus output ensures m(T ) > 0.

Loss function:

L = MSE(p/T 4,∆) + λ · ω(T )

(
me(T )

mm(T )
− 2

)2

Regularization encodes the high-T theoretical prior:

me

mm
→ 2 as T ≫ Tc

ω(T ) is a sigmoid weight centered around T = 6Tc .
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ensures stable optimization and prevents the
training instabilities often induced by hard,
localized constraints.

Mei, J. (UCAS) Title Page 27/10/2025 9 / 17



Results and Discussion
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Extracted Gluon Mass Functions

me(T ) and mm(T ) both show rapid drop near Tc , reflecting liberation of degrees of freedom.

At high T , both masses increase linearly, consistent with perturbative behavior.
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Comparison with Lattice Screening Masses

Thermal masses from the quasiparticle model differ from screening masses (Nakamura; Saito;
Sakai, 2004).

Screening masses probe exponential fall-off of correlators; thermal masses affect real-time
propagation.
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High-T Behavior of me/mm

The regularization term effectively guides the network toward correct asymptotic
behavior (Maezawa et al., 2010).
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Shear Viscosity from the Quasiparticle Model

Using the extracted thermal masses, we compute
the shear viscosity η via the relaxation time
approximation (RTA):

η =
1

15T

∑
i=e,m

di

∫
d3p

(2π)3
p4

E 2
i

τi fi (1 + fi )

The relaxation time is given by:

τ−1
i =

Nc

4π
g2(T )T ln

(
2k

g2(T )

)
with g2(T ) extracted from m2

e = Nc

6 g2T 2

Entropy density s is obtained from lattice data
via s = (ϵ+ p)/T
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Summary

Developed a neural-network-based framework to extract temperature-dependent
chromo-electric and chromo-magnetic gluon masses in pure SU(3) gauge theory.

Used a quasiparticle model with two separate gluonic mass functions:

me(T ), mm(T )

trained to reproduce lattice pressure and trace anomaly data.

Introduced a soft regularization term to guide the model towards the high-T theoretical limit:

me

mm
→ 2

Successfully captured the non-perturbative features of gluon mass behavior near Tc , while
reproducing perturbative scaling at high temperatures.

Extracted thermal masses differ significantly from screening masses, highlighting the
distinction between thermal and spatial correlation scales.

Calculated shear viscosity η/s shows a minimum near Tc approaching the KSS bound,
consistent with lattice QCD results.
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Remarks on High-Temperature Regularization

Current Constraint from 3D-EFT and N = 4 SYM

The regularization enforces me/mm → 2 based on:

3D effective field theory calculations

N = 4 Super Yang-Mills theory results

Subtle Issues Worth Noting

Both 3D-EFT and SYM predictions refer to screening mass ratios, while our work extracts
thermal masses—these need not share identical high-T behaviors

The current temperature range T/Tc ∈ [1, 10] remains pre-asymptotic

More discussions and comments are welcomed to refine the high-temperature constraints
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