

Elliptic flow of Ds as evidence of the sequential hadronization mechanism in the hot QCD medium

代巍 Wei Dai

中国地质大学(武汉)CUG

arXiv:2510.16299

In collaboration with: Zi-Xuan Xu, Jiaxing Zhao, Ben-Wei Zhang, and Pengfei Zhuang

Outline

- Introduction of Sequential Coalescence
- Implementation of the Sequential Coalescence Mechanism
- Impact of the Sequential Coalescence Mechanism
- Reversal of the v_2 hierarchy between D^0 and D_S as evidence
- Summary and Outlook

Hadronization in relativistic heavy-ion collisions

- ◆ A deconfined QCD matter— quark-gluon plasma(QGP) has been created.
- ◆ Hadronization: a non-perturbative process
- ◆ Hadronization in the hot QCD medium shows a huge difference compared to the vacuum case.
- ◆ Flow information will be captured in the in-medium hadronization process.

Heavy flavor can be a nice probe to study in-medium hadronization:

Produced by hard scattering, described by pQCD.

0 fm/c

Time:

lacktriangle HQ mass $m_Q\gg T_{QGP}$, Charm Number Conservation.

◆ Fewer excited states compared to light hadrons.

Initial state

GGP phase

Initial state

GGP phase

Freeze-out

Hadronization

Freeze-out

Hadronization

Hadronization

Freeze-out

Hadronization

Hadronization

Hadronization

Hadronization

Hadronization

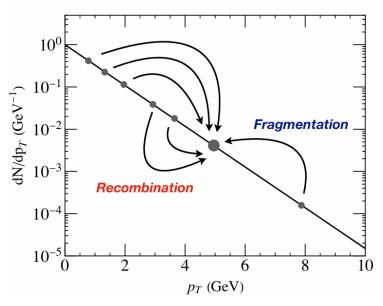
Hadronization

Freeze-out

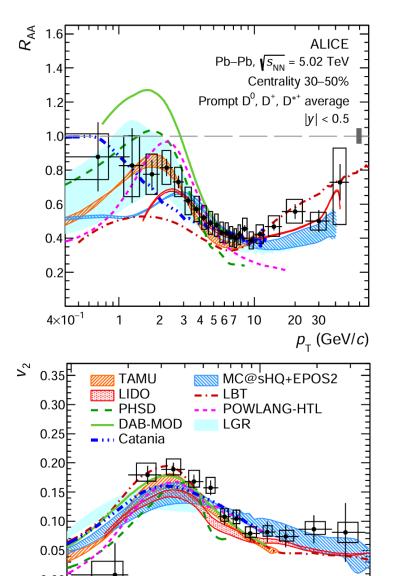
Hadronization

QPT2025 workshop Guilin 2025 Oct 24-28

arXiv:2303.17254


Final detected

~1015 fm/c


~10 fm/c

Coalescence + fragmentation hadronization

Coalescence: a precise constraint will provide a strong probe of flow!

- ♦ Well accepted scenario: → provide good descriptions of available data :
 - CATANIA Phys. Lett. B 821 (2021), 136622; Eur. Phys. J. C 78 (2018) no.4, 348
 - Duke Phys. Rev.. C 92 (2015) no.2, 024907; Phys. Rev. C 88 (2013), 044907
 - Nantes Phys. Rev. C 79 (2009), 044906
 - PHSD Phys. Rev. C 92 (2015) no.1, 014910; Phys. Rev. C 93 (2016) no.3, 034906
 - TAMU Phys. Lett. B 655 (2007), 126-131; Phys. Lett. B 795 (2019), 117-121
 -
- ◆ ALL hadronized at the same temperature!

Centrality 30–50%, |y| < 0.8

JHEP 01 (2022), 174

5 6 7 8 9 1 0

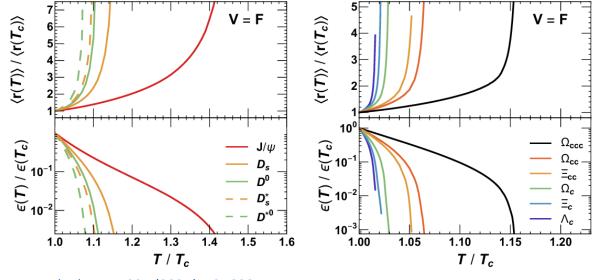
20 30

 $p_{_{\rm T}}$ (GeV/c)

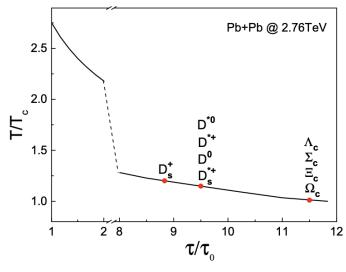
-0.05

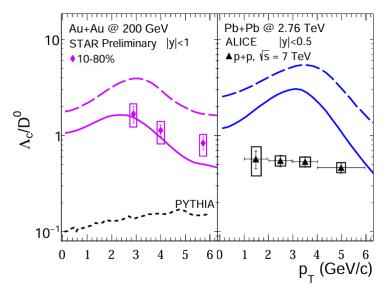
Sequential hadronization = realistic

- ◆ The hadrons containing heavy quarks
 - with larger binding energy,
 - survive at higher temperatures.

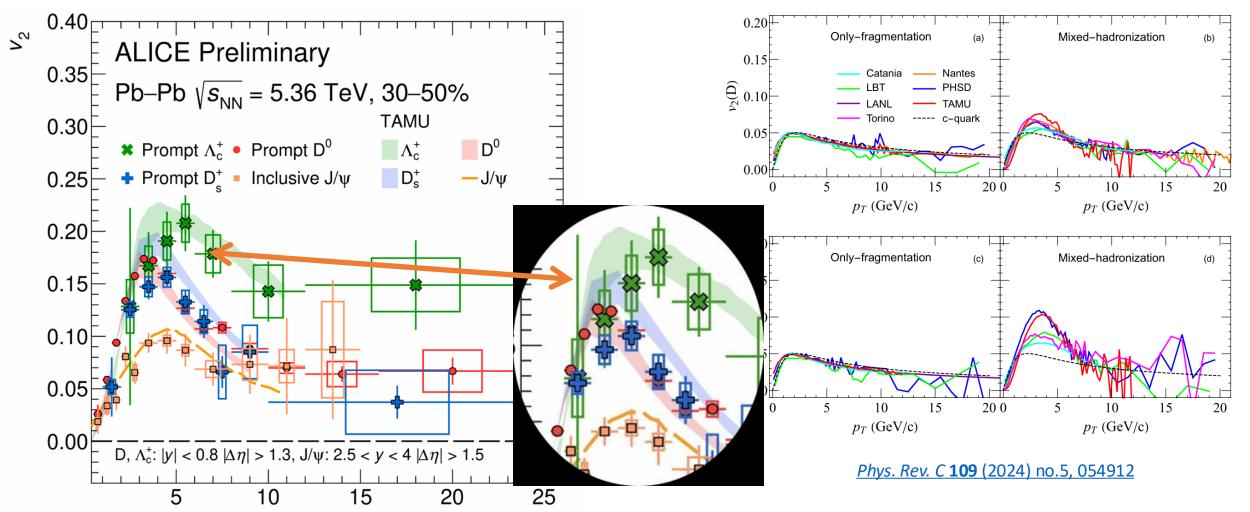

Shuzhe Shi, Jiaxing Zhao, Pengfei Zhuang CPC (2020)

◆ The hadron dissociation (hadronization) temperature can be calculated by solving the Dirac equation with quark potential models.

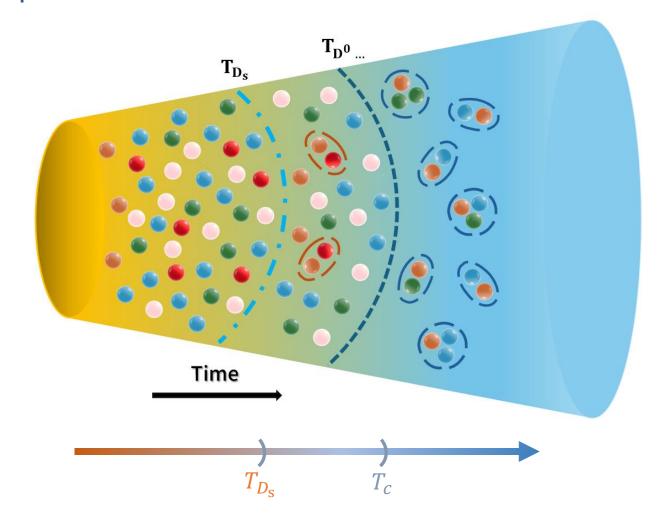

arXiv:1805.10858



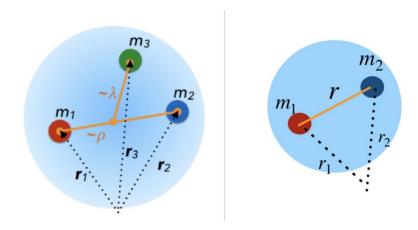
$$T_d^{J/\psi} > T_d^{D_s} > T_d^{\Omega_{ccc}} > T_d^{D^0} > T_d^{\Omega_{cc},\Xi_{cc}} > T_d^{\Omega_c,\Xi_c,\Lambda_c} > T_d^{\pi,K,N} \approx T_c$$



Nucl. Phys. A 1005 (2021), 121898


v_2 Hierarchy between D^0 and D_s^+ due to conventional Coalescence

The v_2 of D_s^+ is lower than D^0 in the intermediate- p_T region, contradict to model predictions.

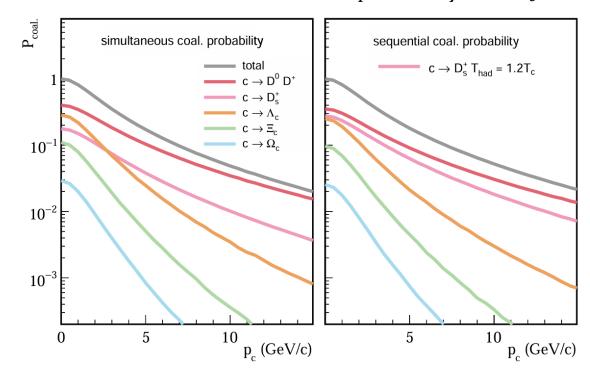

arXiv:2505.13892 in Quark Matter 2025 p_{T} (GeV/c)

How to consider Sequential Coalescence?

- \triangleright D_s coalesce before other hadrons at a temperature $T_{D_s}=1.2~T_c$ (By solving Dirac Equation)
- \triangleright All other heavy-flavor hadrons hadronize on a separate hypersurface at $T=T_c$

Coalescence Hadronization

The momentum distribution of hadrons produced from coalescence:


$$P_h = g_h \int \prod_{i=1}^n \frac{d^3 x_i d^3 p_i}{(2\pi)^3} f_i(x_i, p_i) \cdot W_h(x_1, \dots, x_i, p_1, \dots, p_i)$$

- Quark distribution function $f_i(x_i, p_i)$ For light quark $f_i(p_i) = N_i/(e^{u_\mu p_i^\mu/T} + 1)$
- Wigner function $W_h(\mathbf{r}, \mathbf{p}) = \int d^3 \mathbf{y} e^{-i\mathbf{p}\cdot\mathbf{y}} \, \psi\left(\mathbf{r} \frac{\mathbf{y}}{2}\right) \psi^*\left(\mathbf{r} \frac{\mathbf{y}}{2}\right)$

The total sequential coalescence probability:

$$P_{coal}(p_c) = C \cdot \left(P_{D_s}(p_c, T_{D_s}) + \sum_{D^0, \dots} (p_c, T_c)\right)$$

C normalize the total coalescence probability when $P_c \rightarrow 0$

☆ Sequential mechanism

- 1. Enhance the earlier-produced hadron yield via coalescence;
 - 2. more coalescence \rightarrow more v_2 ?

Parton-level elliptic flow at different hypersurface

Initial momentum and position:

FONLL *JHEP* 10 (2012) 137

Monte Carlo Glauber model *EPJC* 72 (2012) 1896

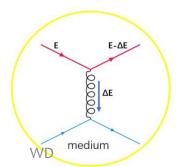
In-medium evolution:

Improved SHELL model WD et al Chin. Phys. C 44 (2020) 104105

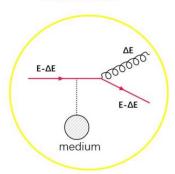
Spatial diffusion coefficient is taken as

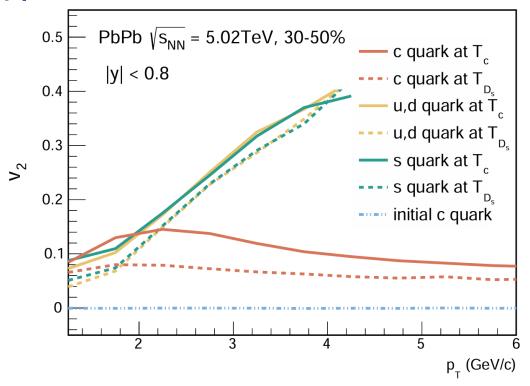
 $(2\pi T)D_s = 2.5$ based on lattice QCD calculation.

The jet transport coefficient $\hat{q} = \hat{q}_0 (\frac{T}{T_0})^3 \frac{p^{\mu} u_{\mu}}{p^0}$


We take $\hat{q}_0 = 1.5 \text{ GeV}^2/\text{fm}$

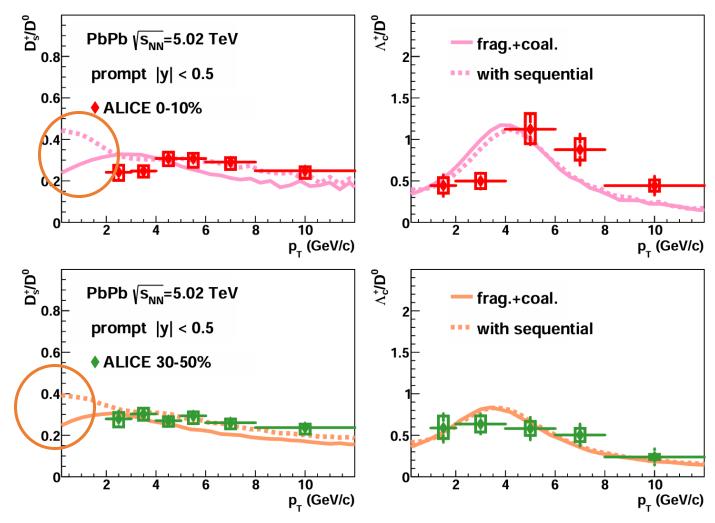
Hydrodynamic information:

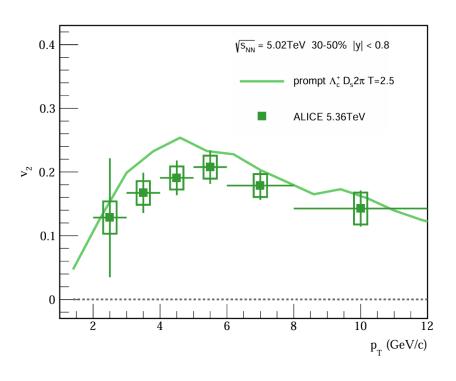

(3+1)D CLVisc hydro


Phys.Rev.C 97 (2018) 6, 064918

Collisional

Radiative




- The elliptic flow v_2 of charm quark at T_c is clearly larger than that at $T_{D_{\mathcal{S}}}$.
- Thermal s quark v_2 is slightly higher than u,d quark at p_T < 2GeV/c.
- v_2 of thermal u, d, s obtained at T_c and T_{D_s} are nearly identical.

the earlier-coalesced charm hadron obtain a smaller v_2 , mainly attribute to different degree of charm quark thermalization.

Model constraint by spectrum,

particle ratios and v_2

Enhancement of D_s/D^0 in the lower p_T might also be phenomenon for sequential Coalescence.

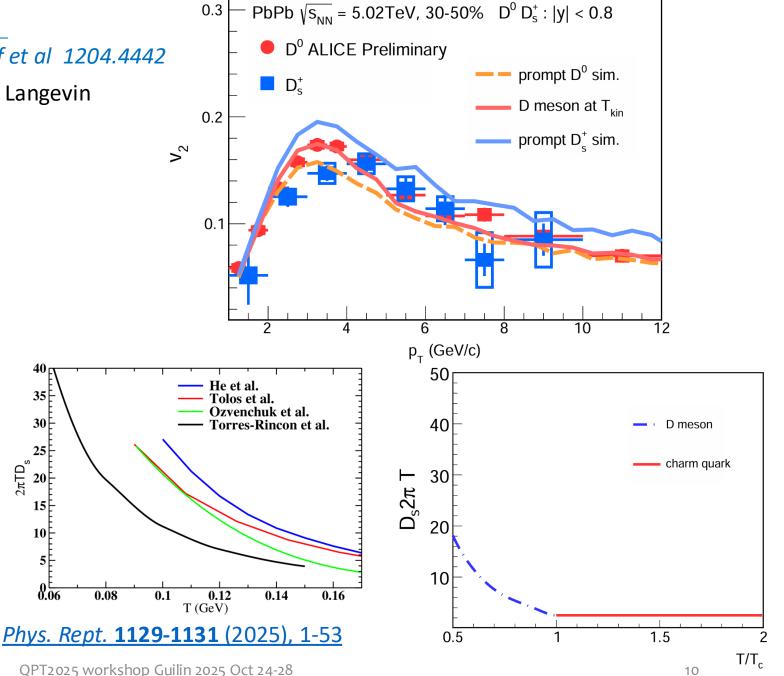
Calculation for different centralities is on the way.

Hadronic re-scattering

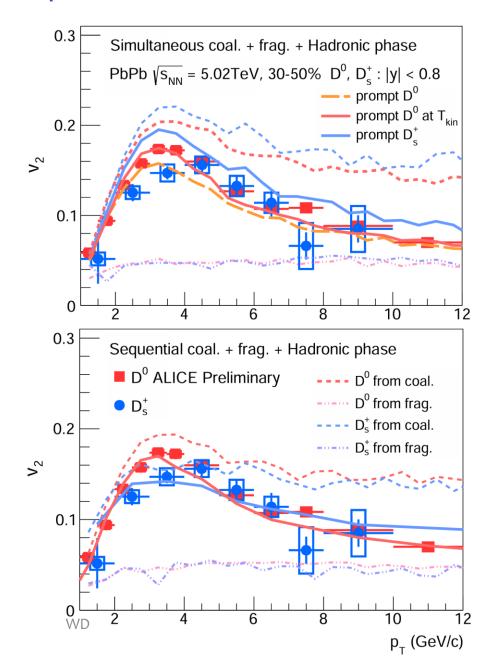
Treatment : Min He, Ralf et al 1204.4442

D-meson hadronic re-scattering is realized in Langevin simulation:

$$dx_{j} = \frac{p_{j}}{E}dt$$


$$dp_{j} = -\Gamma(p)p_{j}dt + \sqrt{\kappa dt}\rho_{j}$$

The fluctuation-dissipation relationship:


$$\kappa = 2\Gamma ET = \frac{2T^2}{D_S}$$

The spatial diffusion coefficient D_s for D meson is taken from Torres-Rincon et al. Phys. Rev. C 105 (2022) no.2, 025203

: BREAKING v_2 hierarchy for D° and D_s requires a mechanism beyond hadronic scattering!

Sequential & simultaneous coalescence + Hadronic phase

- lacklash The coalescence mechanism dominates the contribution to the elliptic flow at lower and intermediate- p_T .
- ◆ Simultaneous coalescence leads to

$$v_2(D^0) < v_2(D_S)$$
.

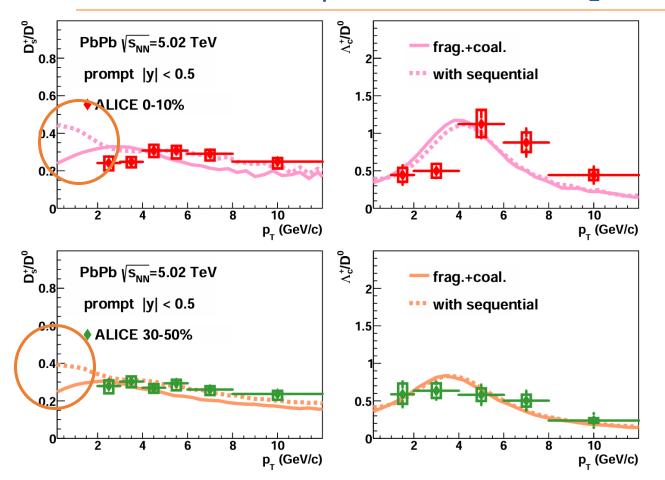
After considering sequential mechanism -

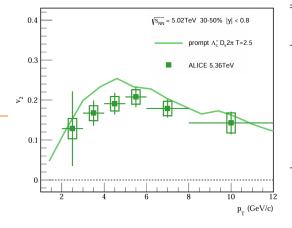
- lacklash The coalescence contribution for v_2 of D_s drops dramatically after considering sequential mechanism.
- Sequential coalescence + Hadronic rescattering reproduces the ALICE measurements.
- lacktriangle The reverse of such a v_2 hierarchy is observed

$$v_2(D^0) > v_2(D_s)$$
.

Guilin 2025 Oct 24-28

11


Summary and Outlook



- An updated Langevin dynamic description with sequential coalescence plus fragmentation approach to successfully predict the elliptic flow of D^0 and D_s in 30-50% centrality Pb+Pb collisions.
- Although the hadronic re-scattering indeed contributes additional elliptic flow to D^0 , it can still not lead to the reversal of the v_2 hierarchy between D^0 and D_s .
- Sequential coalescence effect cause the v_2 of D_s mesons significant suppressed at $p_T \approx 2-5$ GeV/c, the reverse of such a v_2 hierarchy is observed.
- \triangleright The elliptic flow of D_s provides compelling evidence of the sequential hadronization mechanism and supplies a unique opportunity to further constrain the hadronization processes of charm hadrons.

Thank you!

Model constraint by spectrum, particle ratios and v_2

Meson	M(GeV)	J^P	$\langle r \rangle_{T_c} ({ m fm})$	B.R.
D^+	1.869	0 ⁻ (1S)	0.7	-
D^0	1.865	$0^{-}(1S)$	0.7	-
$D^{*0}(2007)$	2.007	$1^{-}(1S)$	0.77	$100\% \rightarrow D^0$
$D^{*+}(2010)$	2.010	$1^{-}(1S)$	0.77	$68\% \rightarrow D^0$
$D_0^*(2300)$	2.343	$0^{+}(1P)$	0.77	$68\% \rightarrow D^0$
$D_1(2420)$	2.422	1 ⁺ (1P)	0.77	$68\% \rightarrow D^0$
$D_1^0(2430)$	2.412	1 ⁺ (1P)	0.77	$68\% \rightarrow D^0$
$D_2^*(2460)$	2.461	2 ⁺ (1P)	0.77	$68\% \rightarrow D^0$
$D_0^0(2550)$	2.549	$0^{-}(2S)$	0.77	$68\% \rightarrow D^0$
$\overline{D_s^+}$	1.968	0 ⁻ (1S)	0.66	-
D_s^{*+}	2.112	$1^{-}(1S)$	0.72	$100\% \to D_s^+$
$D_{s0}^{*\pm}(2317)$	2.318	$0^{+}(1P)$	0.72	$100\% \to D_s^+$
$D_{s1}^{\pm}(2460)$	2.460	1+(1P)	0.72	$100\% \rightarrow D_s^+$
$D_{s1}^{\pm}(2536)$	2.535	1+(1P)	0.72	$79\% \rightarrow D^0$,
				$21\% \rightarrow D^+$
$D_{s2}^{*}(2573)$	2.569	$2^{+}(1P)$	0.72	$34\% \rightarrow D^0$,
				$16\% \rightarrow D^+$
				$50\% \rightarrow D_s^+$
$D_{s0}^{+}(2590)$	2.591	$0^{-}(2S)$	0.72	$50\% \rightarrow D^+$,
				$50\% \rightarrow D_s^+$

Enhancement of D_s/D^0 in the lower p_T might also be phenomenon for
sequential Coalescence

Baryon	M	J^P	$\langle \rho \rangle_{T_c}$	$\langle \lambda \rangle_{T_c}$	B.R.
	(GeV)		(fm)	(fm)	
Λ_c^+	2.286	$0(\frac{1}{2}^+)(1S)$	0.75	0.75	-
$\Lambda_c(2595)^+$	2.592	$0({\textstyle\frac{1}{2}}^-)(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$\Lambda_c(2625)^+$	2.628	$0(\frac{3}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$\Lambda_c(2860)^+$	2.856	$0(\frac{3}{2}^+)(1D)$	0.8	0.8	$50\% \to \Lambda_c^+$
$\Lambda_c(2880)^+$	2.881	$0(\frac{5}{2}^+)(1D)$	0.8	0.8	$50\% \to \Lambda_c^+$
$\Lambda_c(2765)^+$	2.766	$0(\frac{1}{2}^+)(2S)$	0.8	0.8	$100\% \to \Lambda_c^+$
$\Lambda_c(2940)^+$	2.939	$0(\frac{3}{2}^{-})(2P)$	0.8	0.8	$50\% \to \Lambda_c^+$
$\Sigma_c(2455)^{(++,+,0)}$	2.453	$1(\frac{1}{2}^+)(1S)$	0.75	0.75	$100\% \to \Lambda_c^+$
$\Sigma_c(2520)^{(++,+,0)}$	2.518	$1(\frac{3}{2}^+)(1S)$	0.75	0.75	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.713	$1(\frac{1}{2}^-)(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.799	$1(\frac{1}{2}^-)(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.773	$1(\frac{3}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$\Sigma_c(2800)^{(++,+,0)}$	2.800	$1(\frac{3}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.789	$1(\frac{5}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	3.041	$1(\frac{1}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
C(++,+,0)	3.040	$1(\frac{3}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	3.043	$1(\frac{3}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	3.038	$1(\frac{5}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
C(++,+,0)	3.023	$1(\frac{5}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
C(++,+,0)	3.013	$1(\frac{7}{2}^+)(1D)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.901	$1(\frac{1}{2}^+)(2S)$	0.8	0.8	$100\% \to \Lambda_c^+$
$C_c^{(++,+,0)}$	2.936	$1(\frac{3}{2}^+)(2S)$	0.8	0.8	$100\% \to \Lambda_c^+$
$\Xi_c^{(+,0)}$	2.469	$\frac{1}{2}(\frac{1}{2}^+)(1S)$	0.75	0.75	-
$E_c^{\prime(+,0)}$	2.578	$\frac{1}{2}(\frac{1}{2}^+)(1S)$	0.75	0.75	$100\% \to \Xi_c$
$E_c(2645)^{(+,0)}$	2.645	$\frac{1}{2}(\frac{3}{2}^+)(1S)$	0.75	0.75	$100\% \to \Xi_c$
$E_c(2790)^{(+,0)}$	2.792	$\frac{1}{2}(\frac{1}{2}^-)(1P)$	0.8	0.8	$100\% \to \Xi_c$
$E_c(2815)^{(+,0)}$	2.818	$\frac{1}{2}(\frac{3}{2}^-)(1P)$	0.8	0.8	$100\% \to \Xi_c$
$E_c(2923)^{(+,0)}$	2.923	$\frac{1}{2}(\frac{3}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$E_c(2930)^{(+,0)}$	2.940	$\frac{1}{2}(\frac{5}{2}^-)(1P)$	0.8	0.8	$100\% \to \Lambda_c^+$
$E_c(2970)^{(+,0)}$	2.965	$\frac{1}{2}(\frac{3}{2}^-)(1P)$	0.8	0.8	$50\% \to \Lambda_c^+$
					$50\% \to \Xi_c$
Ω_c^0	2.695	$0(\frac{1}{2}^+)(1S)$	0.75	0.75	-
$\Omega_c(2770)^0$	2.765	$0(\frac{3}{2}^+)(1S)$	0.75	0.75	$100\% \to \Omega_c^0$
$\Omega_c(3000)^0$	3.000	$0(\frac{1}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Omega_c^0$
$\Omega_c(3050)^0$	3.050	$0(\frac{1}{2}^{-})(1P)$	0.8	0.8	$100\% \to \Omega_c^0$
$\Omega_c(3065)^0$		$0(\frac{3}{2}^{-})(1P)$		0.8	$100\% \to \Omega_c^0$
$\Omega_c(3090)^0$		$0(\frac{1}{2}^+)(2S)$	0,81	0.8	$100\% \to \Omega_c^0$
$\Omega_c(3120)^0$	3.119	$0(\frac{3}{2}^+)(2S)$	0.8	0.8	$100\% \to \Omega_c^0$