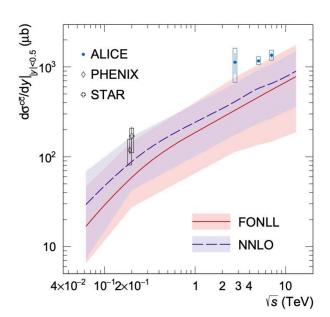
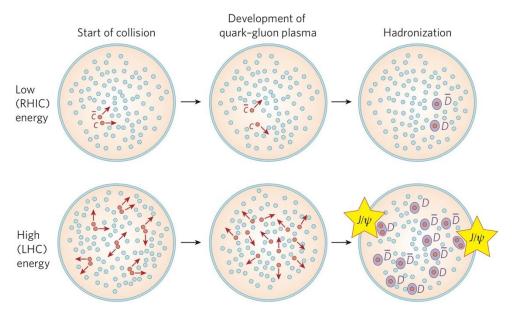

第十六届QCD相变与相对论重离子物理研讨会

Measurement of Quarkonium Production and Polarization in Heavy-Ion Collisions

中国科学技术大学 (USTC)

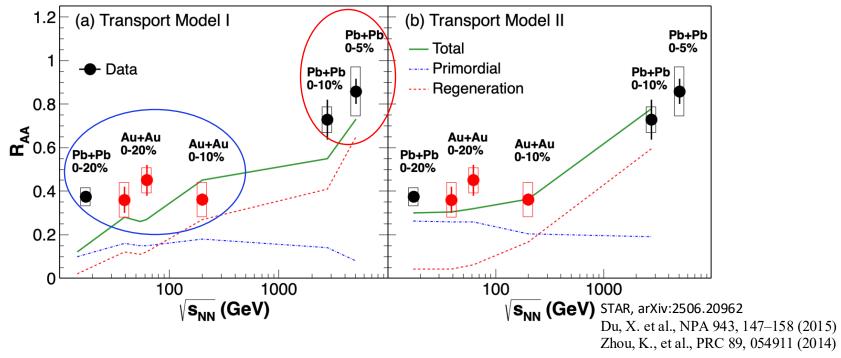
Guilin, 2025.10.26




Charmonium production in heavy-ion collisions

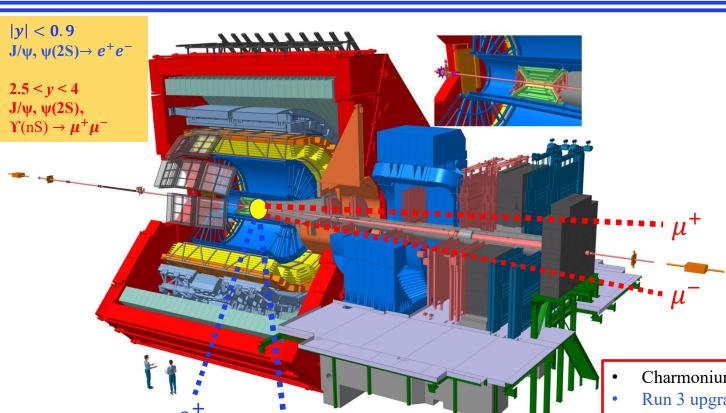
ALICE, Phys. Rev. D 105, 011103 (2022)

P. Braun-Munzinger, J. Stachel, Nature 448 (2007) 302



- Charm quark production cross section at the LHC is much larger compared to RHIC energies
- \triangleright The (re)generation contribution to J/ ψ production is dominant at LHC energies

Charmonium production in RHIC and LHC



- Suppression of the charmonia due to colour screening and the dynamic dissociation
- The (re)generation contribution to the J/ψ is significantly higher than at RHIC

Quarkonium measurements with the ALICE

Time Projection Chamber

Tracking, particle identification

Inner Tracking System

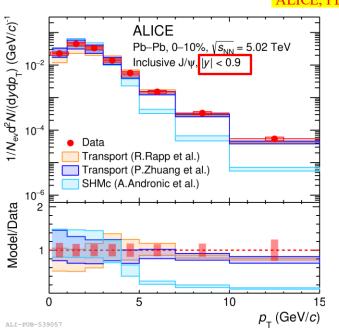
Tracking, vertex reconstruction, Event plane determination

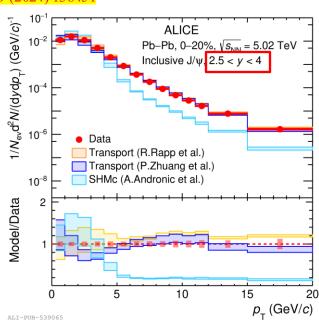
V0 Detector

Centrality determination, triggering, event plane determination, and background rejection

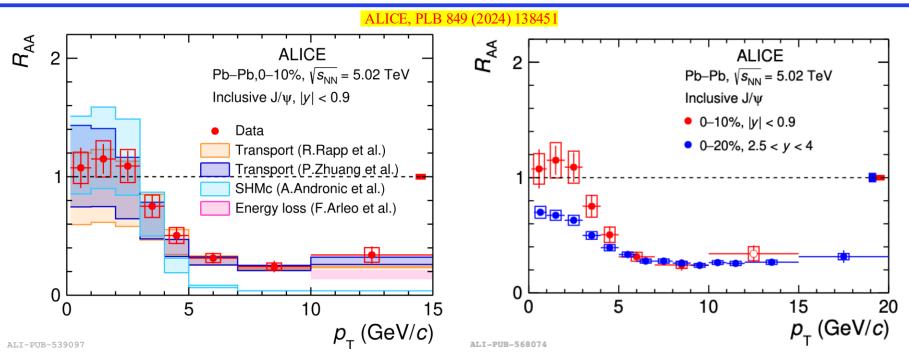
Muon spectrometer

Trigger and tracking for muons


- Charmonium measurement down to $p_T = 0$
- Run 3 upgraded detectors allow to measure the $\psi(2S)$, $\Upsilon(nS)$ at midrapidty



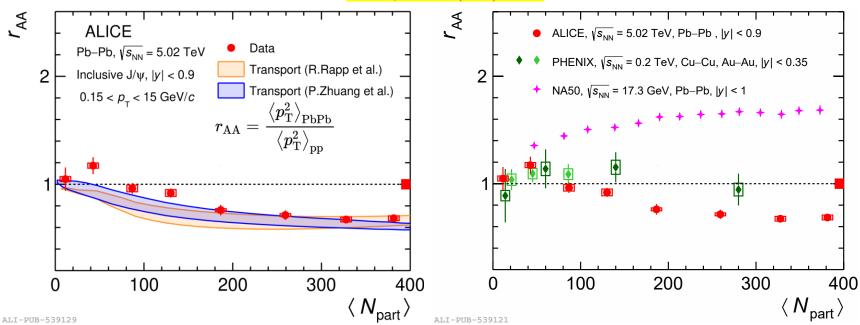
Inclusive J/ψ yield


- \triangleright Inclusive J/ ψ yields are shown as a function of p_T at **mid-(left) and forward (right)** rapidity in central collisions
- ➤ Two transport models describe the data within uncertainties
- SHMc agrees with data at low p_T , and underestimates the measurement at high p_T

Du, X. et al., NPA 943, 147–158 (2015) Zhou, K., et al., PRC 89, 054911 (2014) Andronic, A, et al, PLB 797, 134836 (2019)

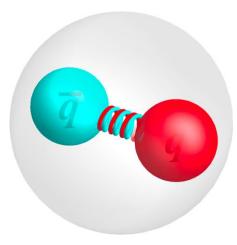
Inclusive $J/\psi R_{AA} \text{ vs } p_T$

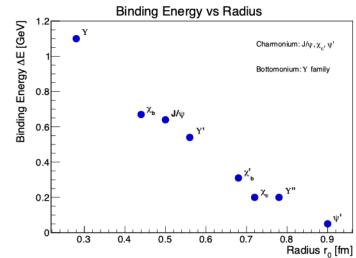
- \triangleright Transport and SHMc models describe data at low p_T , while SHMc underestimates the measurement at high p_T , the energy loss model agrees with data at high p_T
- **Evidence for the (re)generation and demonstration of deconfinement at LHC**


Du, X. et al., NPA 943, 147–158 (2015) Zhou, K., et al., PRC 89, 054911 (2014) Andronic, A, et al, PLB 797, 134836 (2019) Arleo. F, PRL119, 062302 (2017)

Inclusive J/ ψ mean p_T

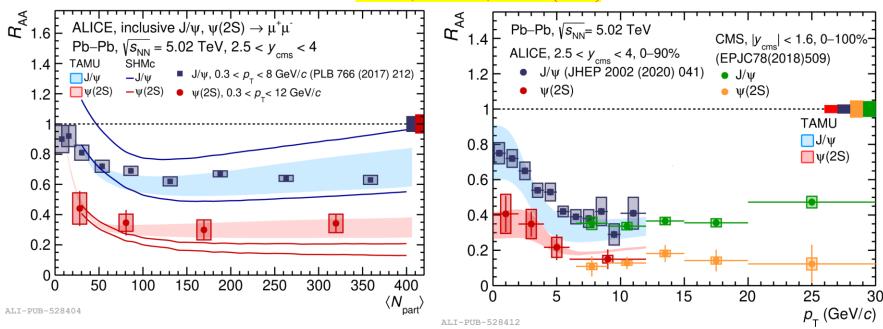
 \triangleright Decreasing trend for r_{AA} from semicentral toward central collisions


- Zhou, K., et al., PRC 89, 054911 (2014)
- r_{AA} below unity indicates a softening of the J/ ψ p_T shape in Pb-Pb collisions compared to pp collisions, the behavior is different from the lower center-of-mass energies



The interaction of the quarkonium and QGP

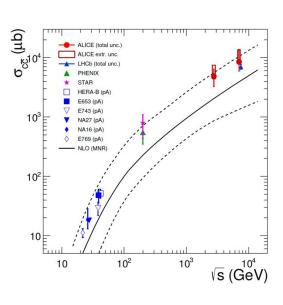
State	J/ψ	χс	ψ′	Y	χb	Y'	χb′	Υ"
Mass [GeV]	3.1	3.53	3.68	9.46	9.99	10.02	10.26	10.36
ΔE [GeV]	0.64	0.2	0.05	1.1	0.67	0.54	0.31	0.2
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
ro [fm]	0.5	0.72	0.9	0.28	0.44	0.56	0.68	0.78

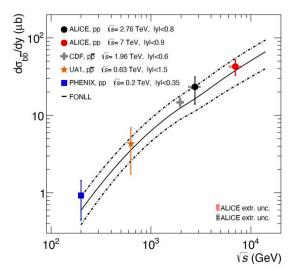

- Bound state will be dissociated into open heavy flavor hadrons when the debye radius is smaller than the size of the bound state
- Suppression of quarkonium in relativistic heavy ion collisions should provide a "smoking-gun" signature of QGP formation

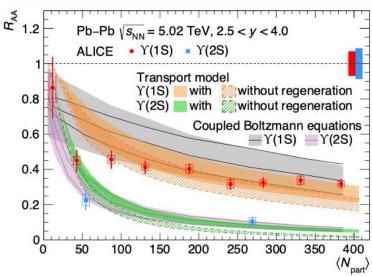
$\psi(2S) R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

ALICE, PRL **132**, 042301(2024)

- \triangleright A larger suppression of the $\psi(2S)$ w.r.t the J/ ψ is observed
- \triangleright The $\psi(2S)$ R_{AA} increases at low p_T , which is a hint of $\psi(2S)$ regeneration
- The TAMU model describes data better than SHMc in central collisions

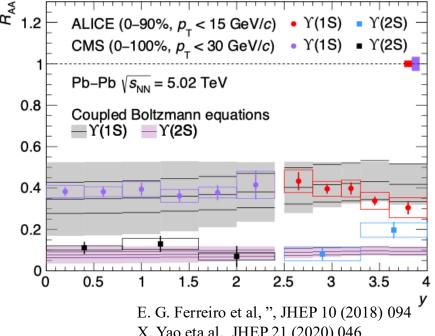

(TAMU) X. Du, et al.,NPA943,147-158(2015) (SHMc) A. Andronic, et al.,PLB797,134836(2019)




$\Upsilon(nS)$ production in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

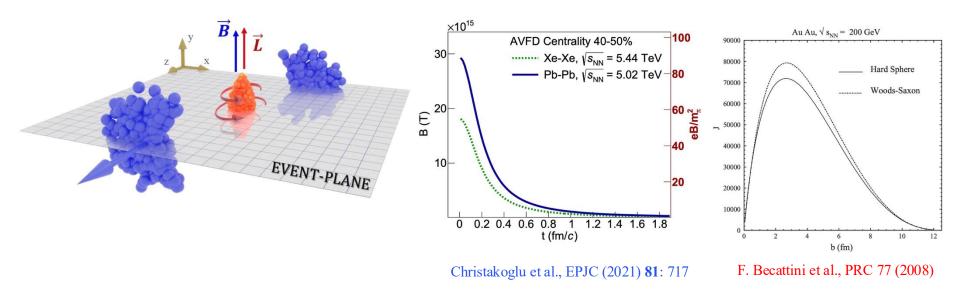
ALICE, PLB 822 (2021) 136579

- The beauty production cross section is significantly lower than that of charm, and the contribution from Y production is negligible.
- Slight centrality dependence for both $\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} , stronger suppression of $\Upsilon(2S)$ compared to $\Upsilon(1S)$



Y(nS) production in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

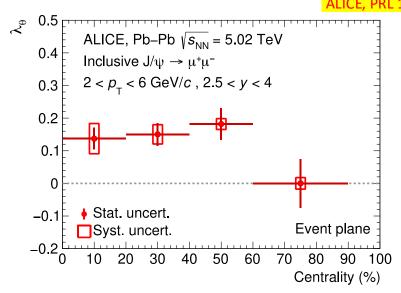
ALICE, PLB 822 (2021) 136579

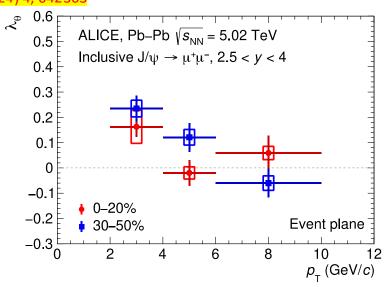


- X. Yao eta al, JHEP 21 (2020) 046
- Slight rapidity dependence, the trend is different from the model calculation
- No p_T dependence which in strong contrast to the J/ ψR_{AA}

Charmonium polarization

Heavy-quark pairs are produced in the early stage of AA collision and can experience both the **short living B and the L of the rotating medium**, polarization w.r.t. an axis orthogonal to the event plane can be affected.

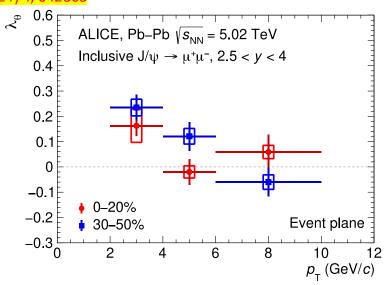

X. Wang, Z. Liang, Phys.Lett.B 629:20-26,2005



J/ψ polarization w.r.t the event plane

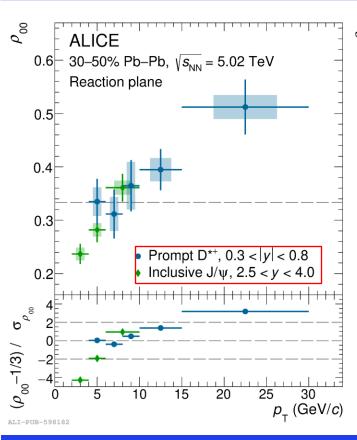
ALICE, PRL 131 (2024) 4, 042303

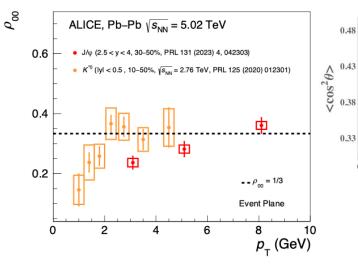
- First measurement of quarkonium polarization w.r.t the event plane
- ightharpoonup Significant polarization (~3.5 σ) observed in semicentral collisions (40-60%) in 2 < p_T < 6 GeV/c
- \triangleright The significance of the polarization reaches ~3.9 σ at low p_T (2 < p_T < 4 GeV/c) in 30-50%
- > Interpretation of results requires inputs from theoretical models

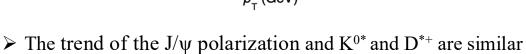


J/ψ polarization w.r.t the event plane

ALICE, PRL 131 (2024) 4, 042303




- First measurement of quarkonium polarization w.r.t the event plane
- > Significant polarization ($\sim 3.5\sigma$) observed in semicentral collisions (40-60%) in $2 < p_T < 6 \text{ GeV/}c$
- \triangleright The significance of the polarization reaches ~3.9 σ at low p_T (2 < p_T < 4 GeV/c) in 30-50%
- > Interpretation of results requires inputs from theoretical models



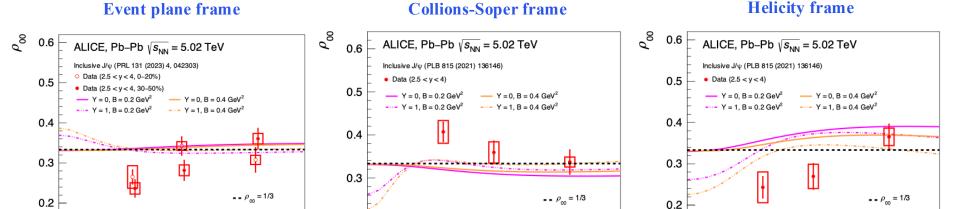
J/ψ polarization compared with model

- The magnetic field plays a more important role in polarization, particularly for charm vector mesons at LHC (?)
- ➤ Interpretation of results requires inputs from theoretical models

 P_T (GeV)

S. Dey et. al, arXiv: 2502.20352v2

 $\tau_s = 15 \text{ fm (Bottom)}$



J/ψ polarization compared with model

Helicity frame

 $p_{_{\!\scriptscriptstyle T}}$ (GeV)

Collins-Soper frame

 $p_{_{\!\scriptscriptstyle T}}$ (GeV)

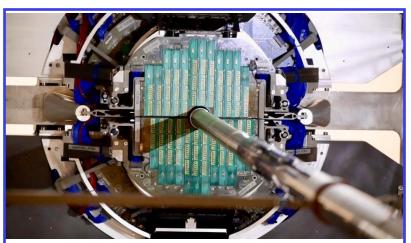
The observed trend of the J/ ψ polarization is inconsistent with the holographic theoretical predictions in the event-plane and Collins–Soper frames

2

Y. Zhao et al. JHEP 08 (2024) 070

2

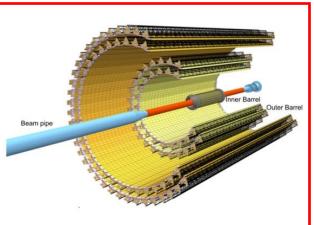
Event Plane


 $p_{_{\!\scriptscriptstyle T}}$ (GeV)

0.2

ALICE in Run 3 (MFT and ITS2)

New Muon Forward Tracker


➤ Monolithic Active Pixel Sensor technology

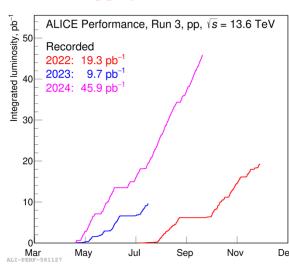
> Spatial resolution: 5 μm

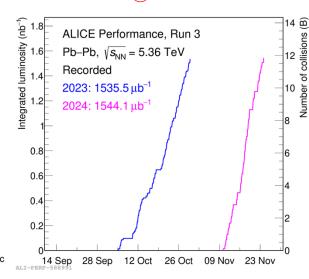
> Pixel size: 27 μm x 29 μm

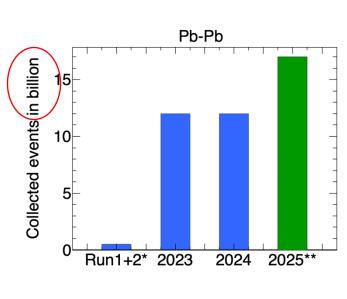
> Integration time: 5 μs

Upgraded Inner Tracking System

- ➤ 3 layers in inner barrel (IB), 4 in outer barrel (OB)
- ➤ Get closer to IP: from 39 mm to 23 mm
- \triangleright Reduced material budget: from 1.14% X_0 to 0.36% X_0 per layer
- ightharpoonup Reduced pixel size: from 50 x 425 μ m² to 29 x 27 μ m²




Statistics collected in LHC Run 3 (so far)



Pb-Pb @5.36 TeV

- Record all the minimum bias (MB) events during the data taken
- Collected approx. 24B and 2000B MB events in Pb-Pb and pp collisions, respectively
- \triangleright The reconstructed J/ ψ significance is greater than 1200

Summary

Charmonium

- Dominant contribution from (re-)generation for J/ψ
- First measurement of quarkonium significant polarization w.r.t the event plane

Bottomonium

- Strong suppression for all centrality and p_T , stronger suppression of $\Upsilon(2S)$ compared to the $\Upsilon(1S)$
- No p_T dependence which in strong contrast to the $J/\psi R_{AA}$
- Stay tuned with Run 3

Thanks