Recent LHCb results on open charm and charmonium production

Youen Kang

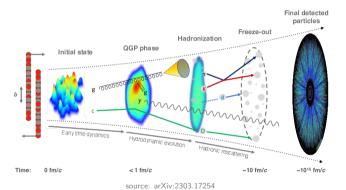
On behalf of LHCb Collaboration
October 25, 2025

Contents

Physics background

LHCb detector

Open charm production


Charmonium production

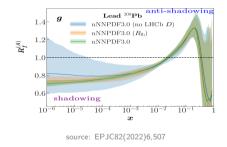
Conclusion and Prospect

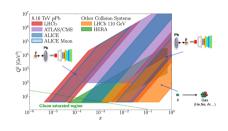
Backup

Charm quark in heavy-ion collisions

Charm quarks are excellent probes, produced at early-stage hard process $au \sim 1/m_c$, experience the medium evolution with long lifetime

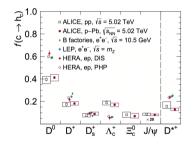
- Nuclear shadowing
- Gluon saturation
- Initial state scatterings

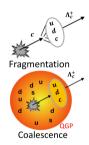

- Color screening
- Comoving effect
- Collectivity
- In-medium energy loss


- Modification of hadronization
- Quarkonia regeneration

Nuclear shadowing

 Modification of nuclear parton distribution functions (nPDFs) relative to pp collisions

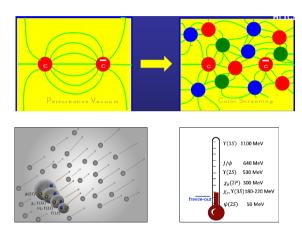



source: J.Phys.Conf.Ser.1271(2019)1, 012008

- Large theoretical uncertainty in high-x region
- ▶ Charm production helps to constrain gluon density in large (x, Q^2) region
- LHCb covers unique kinematics regions of low-x (pPb), medium-x (Pbp), and large-x (fixed-target) regions

Modification of hadronization

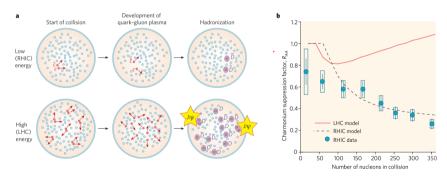
- ► Fragmentation universality expected across different collision systems
 - Different fragmentation fraction observed



source: EPJC84(2024)12,1286

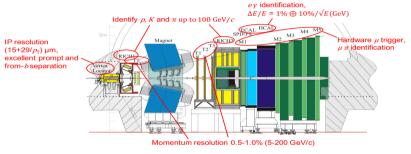
- In high-density medium, quarks can hadronize via colascence mechanism
 - ► Strangeness enhancement (abundant s̄s̄ pair in medium)
 - ► Higher baryon-to-meson ratio

Quarkonia dissociation


- Interaction between cc̄ can be screened by medium (Debye screening)
- Charmonia dissociate by interaction with co-moving particles
- Charmonia serve as thermometer for studying local temperature

thermometer adapted from: Eur.Phys.J.C 61 (2009) 705-710

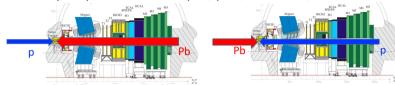
Charmonia regeneration


- ► At high LHC energies:
 - ightharpoonup Much more $c\bar{c}$ are produced
 - ▶ All charm quarks are produced in hard collisions, $N_{c\bar{c}} = const$
 - ► All charmonia dissolved in QGP
 - lacktriangledown J/ψ produced through statistical regeneration, $N_{J/\psi}\sim N_{car{c}}^2$

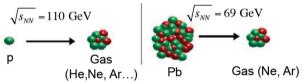
source: Nature 448 (2007) 302-309

LHCb detector

- lacktriangle Single-arm forward spectrometer covering pseudo-rapidity $2 < \eta < 5$
- Designed for studying particles containing b or c quarks


source: JINST 3 (2008) S08005 and IJMPA 30 (2015) 1530022

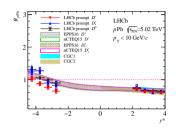
- ► Provide excellent vertex reconstruction and separation, precise tracking, full PID, efficient and fast trigger and unique acceptance
- Playing more and more important roles in heavy-ion physics

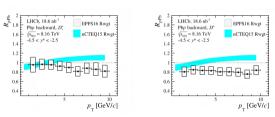


Data set

▶ Forward (pPb) and backward (Pbp) rapidities for pPb collisions

Fixed-target mode acquired by injecting gases in vertex locator (VELO)

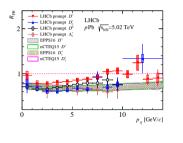

- ► Huge pp collision data set for small-system studies
 - ▶ System size: pp < pA < Ap < AA collisions (small \rightarrow large system)
 - ► Charm production in *pp* collisions serve as baseline, where no nuclear effect and QGP is expected

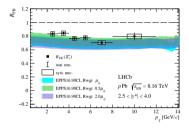

Nuclear modification factor: D mesons

Nuclear modification factor $R_{\rho Pb}$ is defined as:

$$R_{
ho ext{Pb}}(
ho_{ ext{T}}, y^*) = rac{1}{208} rac{\sigma_{
ho ext{Pb}}(
ho_{ ext{T}}, y^*)}{\sigma_{
ho
ho}(
ho_{ ext{T}}, y^*)}$$

- Significant suppression from gluon shadowing at forward rapidity
- Slight difference between hadron species at backward rapidity, hinting at possible final-state effects
- Tension with nPDF predictions at backward rapidity

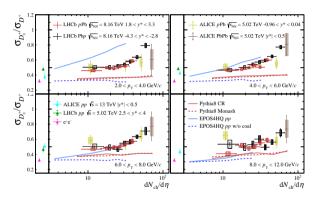




source: JHEP01(2024)070, Phys.Rev.D 110, L031105

Forward-backward asymmetry: D mesons, Λ_c^+ , Ξ_c^+

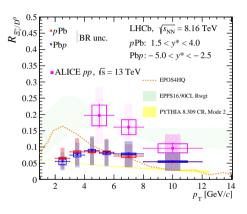
ightharpoonup Forward-backward production ratio as function of p_{T} is presented


source: JHEP01(2024)070

source: Phys.Rev.C 109 (2024) 044901

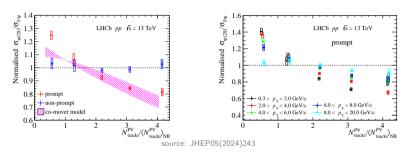
- Suppression at forward rapidity can be described by nPDF predictions
- ightharpoonup Different dependence on p_{T} found for different hadron species

Strangeness enhancement: D_s^+/D^+


- First observation of strangeness enhancement for charm production in high-multiplicity small systems
- Coalescence needs to be considered for a better description of the data

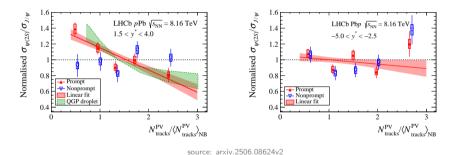
source: Phys.Rev.D 110 (2024) 3, L031105

Baryon-to-meson ratio: Ξ_c^+/D^0


- In high-density medium, modification of hadronization lead to a higher baryon-to-meson ratio
- However, no significant enhancement of charm baryon-to-meson ratio observed
- Dominant uncertainty from branching fraction
- Discrepancy with ALICE result hinting at rapidity dependence

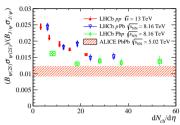
source: Phys.Rev.C 109 (2024) 4, 044901

Charmonia suppression: $\psi(2S)/J/\psi$


Prompt $\psi(2S)$ over J/ψ ratio found to decrease with multiplicity around charmonium production $(N_{\rm tracks}^{\rm PV})$

- ▶ Non-prompt charmonia production, only affected by *b*-decay fraction and far away collision center, the ratio found to be consistent
- lacktriangle The $\psi(2S)$ has larger radius and lower binding energy, more easily dissociated
- ▶ The $\psi(2S)$ is suppressed more in the low- p_T region

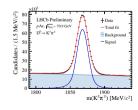
Charmonia suppression: $\psi(2S)/J/\psi$

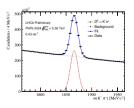

- ▶ No significant multiplicity dependence found for non-prompt ratio
- Prompt ratio in forward rapidity consistent with QGP-droplet prediction

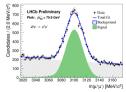


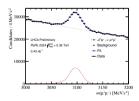
- ightharpoonup Prompt ratio decreases with increasing multiplicity in forward rapidity of $p\mathrm{Pb}$ collisions
- ightharpoonup No multiplicity dependence found in backward pPb collisions

Charmonia suppression: $\psi(2S)/J/\psi$

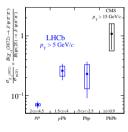

- Multiplicity dependence of prompt $\psi(2S)$ to J/ψ ratio compared from small to large systems
- Result in pPb forward rapidity consistent with that in pp, while in backward rapidity is close to that in PbPb collisions
- As system size gets larger, multiplicity dependence converges to PbPb result
- No multiplicity dependence found for prompt ratio in PbPb collisions, consistent with ALICE result at same collision energy
- Regeneration might not be neglected in large systems, $\psi(2S)$ is more easily regenerated than J/ψ






Conclusion and Prospect

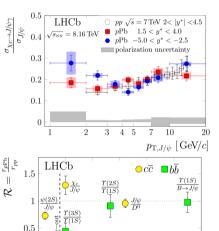
- Modification of D-mesons (D^0 , D_s^+ , D^+ , Λ_c) productions and the forward-backward asymmetry indicate that charm production is sensitive to nuclear matter effects
- No enhancement of charm baryon-to-meson ratio (Ξ_c^+/D^0) observed in $\mathrm{Pb}p$ than in $p\mathrm{Pb}$ collisions
- Strangeness enhancement (D_s^+/D^+) and charmonium suppression $(\psi(2S)/J/\psi)$ are observed, helps to investigate existence of QGP in high-multiplicity small collision systems
- ► Multiplicity dependence of excited-to-ground charmonium ratio shows a smooth transition behavior from small to large collision systems
- More results of charm production will come out with newly collected LHCb Run3 data!

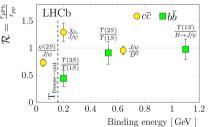

Thanks for your attention!

Q & A

Backup: $\chi_{c1}(3872)/\psi(2S)$

- ▶ The prompt $\chi_{c1}(3872)$ to $\psi(2S)$ ratio decrease with multiplicity in pp collisions
- Compact tetraquark hypothesis describes the pp data better than molecule and conventional charmonium hypothesis


source: Phys.Rev.Lett.126 (2024)24, 242301


source: Phys.Rev.Lett.126 (2021)9, 092001

Prompt $\chi_{c1}(3872)$ to $\psi(2S)$ ratio increases with increasing system size, indicating the hadronic density in $p\mathrm{Pb}$ collisions allow the quark coalescence become dominant

Backup: $\chi_{c1,c2}/J/\psi$

- No suppression found for χ_c in pPb collisions compared to pp collisions
- ▶ The non-dissociation of χ_c states suggests a constraint on temperature in pPb collisions no more than 180 MeV, the smallest binding energy of χ_c states
- \triangleright Similar-binding-energy $\Upsilon(3S)$ suppressed, might dissociate due to final-state effects
- ▶ The dissociation of $\chi_h(3P)$ can also explain this, which has a binding energy around 47 MeV similar to $\psi(2S)$

