

Measurement of Charge Symmetry Breaking in A = 4

hypernuclei in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions at RHIC

Tianhao Shao (邵天浩)

For the STAR Collaboration

Fudan University

The 16th Workshop on QCD Phase Transition and Relativistic

Heavy-Ion Physics

Guilin, China

October 24 - 28, 2025

QPT 2025 - Tianhao Shao

Outline

- Motivation
- Data analysis
- Corrections and systematic uncertainties
- A binding energy results
- Charge symmetry breaking
- Summary

Motivation - Experimental studies

M. Juric et. al., Nuclear Physics A 754 (2005) 3c-13c

Nuclear emulsion experiment in 1970s

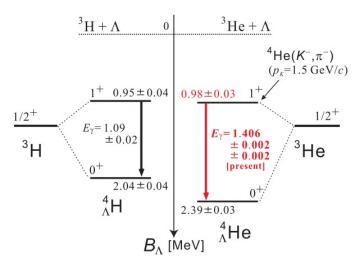
Hypernuclide	$B_{\Lambda}/{ m MeV}$
$\frac{3}{\Lambda}$ H	0.13 ± 0.05
$^4_\Lambda { m H}$	2.04 ± 0.04
$^4_{\Lambda}$ He	2.39 ± 0.03

$$\Delta B_{\Lambda} (g.s.) = B_{\Lambda} ({}_{\Lambda}^{4}H)_{g.s.} - B_{\Lambda} ({}_{\Lambda}^{4}He)_{g.s.} = 350 \pm 60 \text{ keV}$$

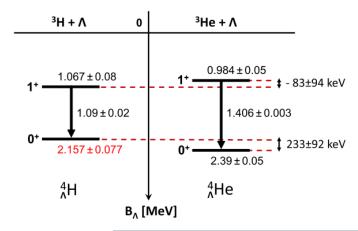
$$\Delta B_{\Lambda} (exc) = B_{\Lambda} ({}_{\Lambda}^{4}H)_{exc} - B_{\Lambda} ({}_{\Lambda}^{4}He)_{exc} = 30 \pm 50 \text{ keV}$$

■ The charge symmetry breaking (CSB) in A = 4 hypernuclei shows a large value in ground states while it is quite small in excited states.

J-PARC E13 Collaboration, PRL 115, 222501 (2015)



A1 Collaboration, PRL 114, 232501 (2015), NPA 954(2016) 149-160



Motivation - Theoretical studies

Model calculations

A. Gal, PLB 744 (2015) 352-357

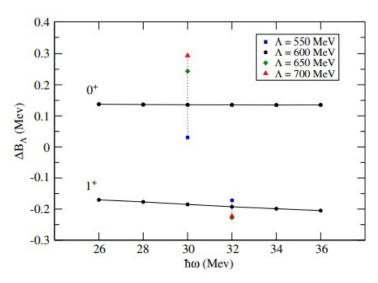
Table 2: Calculated CSB contributions to $\Delta B_{\Lambda}^4(0_{\rm g.s.}^+)$ and total values of $\Delta B_{\Lambda}^4(0_{\rm g.s.}^+)$ and $\Delta B_{\Lambda}^4(1_{\rm exc}^+)$, in keV, from several model calculations of the A=4 hypernuclei. Recall that

$\Delta B_{\Lambda}^{\mathrm{exp}}(0_{\sigma,s}^{+})$	$) = 350 \pm 60 \text{ keV}$	[3].
---	------------------------------	------

$\Lambda (0_{\rm g.s.}) = 300 \pm 00 \text{ K}$	ev [o].					
$^4_{\Lambda} \mathrm{He} - ^4_{\Lambda} \mathrm{H}$	$P_{\Sigma}(\%)$	ΔT_{YN}	ΔV_C	ΔV_{YN}	ΔB_{Λ}^4	ΔB_{Λ}^4
model	$0_{\rm g.s.}^{+}$	1_{exc}^{+}				
ΛNNN [9]	_	_	-42	91	49	-61
$NSC97_e$ [10]	1.6	47	-16	44	75	-10
$NSC97_f$ [11]	1.8				100	-10
NLO chiral [12]	2.1	55	-9	_	46	
$(\Lambda\Sigma)_{\rm e}$ [present]	0.72	39	-45	232	226	30
$(\Lambda\Sigma)_{\rm f}$ [present]	0.92	49	-46	263	266	39
					k	eV

- Most of model calculations can not reproduce the experimental results.
- D. Gazda and A. Gal introduced the Λ - Σ ⁰ mixing in calculation and show that the CSB in ground and excited states are comparable. However, the value in excited states becomes smaller if DvH OPE is considered.
- Need independent experiments to test.

D. Gazda and A. Gal, PRL 116, 122501 (2016) ab-initio NCSM with CSB Λ - Σ 0 mixing:



$$\overline{\Delta B}_{\Lambda}^{J=1} \approx -\overline{\Delta B}_{\Lambda}^{J=0} < 0.$$

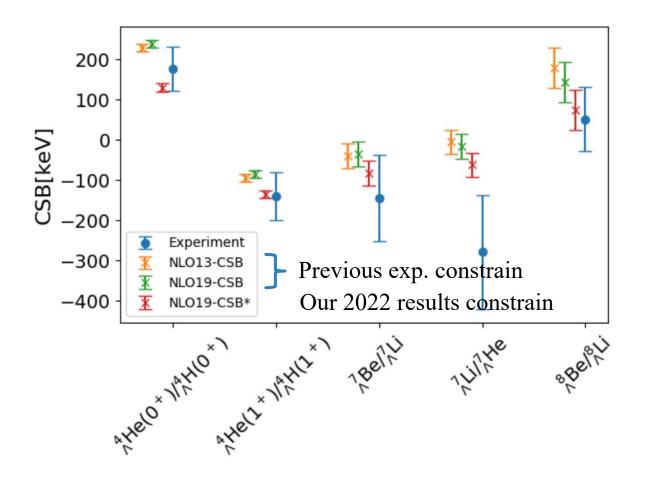
D. Gazda and A. Gal, NPA 954 (2016) 161-175

Consider DvH OPE:

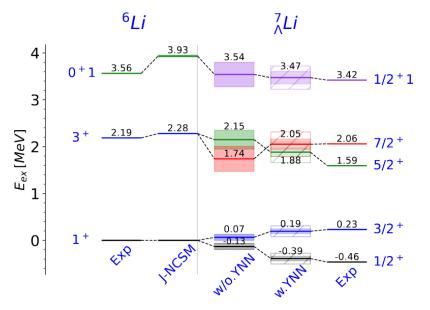
$$\Delta B_{\Lambda}^{J=0} \approx 175 \pm 40 \text{ keV}, \quad \Delta B_{\Lambda}^{J=1} \approx -50 \pm 10 \text{ keV},$$

Motivation - Theoretical studies

■ The CSB in A = 4 hypernuclei can be used to constrain the YN and YNN interactions.



- H. Le et. al., PRC 107 (2023) 2, 024002
- J. Haidenbauer et. al., arXiv:2508.05243v1
- H. Le et. al., PRL 134 (2025) 7, 072502

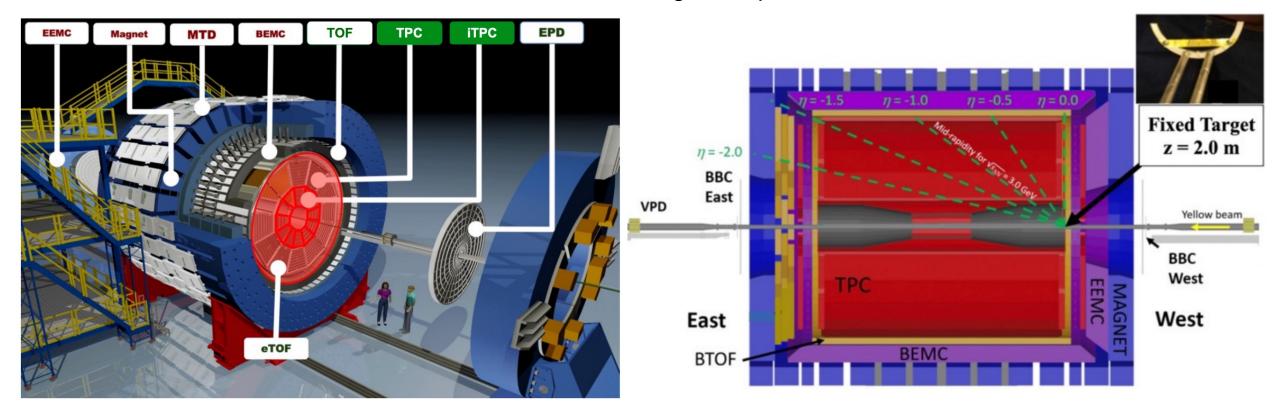


YNN constrained by A = 4 hypernuclei

STAR fixed target program

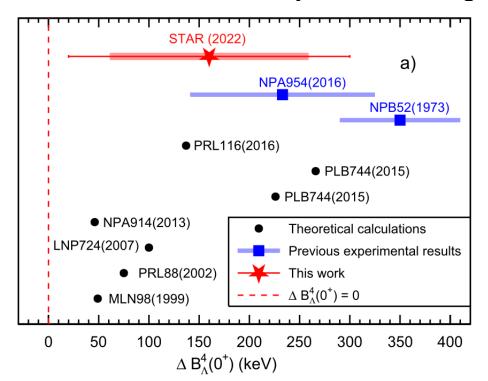
- STAR Au+Au at $\sqrt{s_{NN}} = 3$ GeV in fixed-target mode
- run18 (~300M events) and run21 (~2B events)

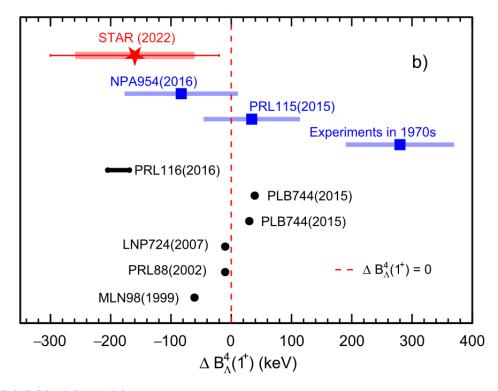
STAR Fixed Target setup



Previous measurement

- Results from run18 Au+Au at 3GeV show that CSB in ground states and excited states maybe similar in magnitude with opposite sign. However, the statistical uncertainties are large.
- Valuable to continue this study with much larger statistics from run 21.



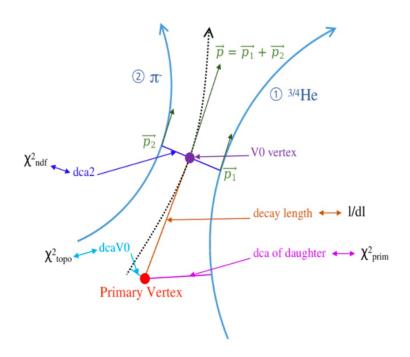


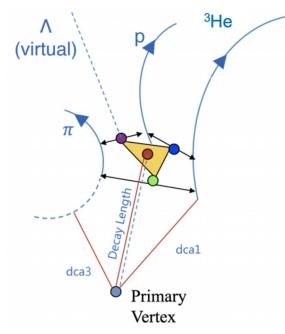
STAR, PLB 834 (2022) 137449

⁴H and ⁴He reconstruction

$$^4_{\Lambda} \text{H} \rightarrow ^4 \text{He} + \pi^-$$

$$^4_{\Lambda}\text{H} \rightarrow ^4\text{He} + \pi^ ^4_{\Lambda}\text{He} \rightarrow ^3\text{He} + p + \pi^-$$





Decay topology of ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$.

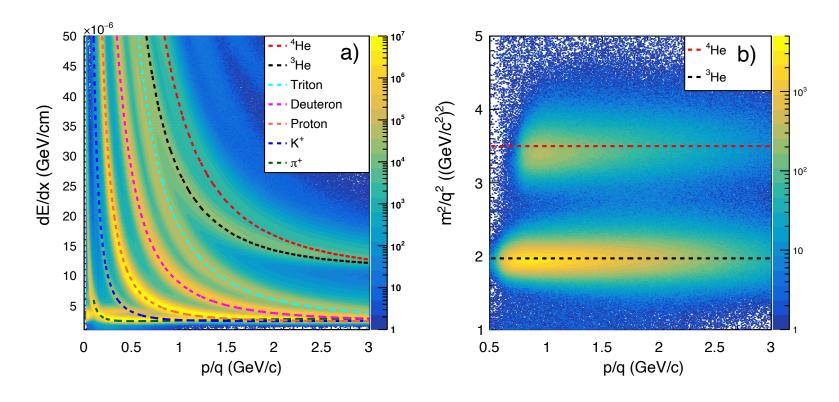
Reconstructed with KFParticle package

KFParticle class describes particles by:

■ KFParticle package shows a high quality of the reconstructed particles, high effciencies, and high signal to background ratios.

X. Ju, et. al., NST 34 (2023) 10, 158

Charged particle identification

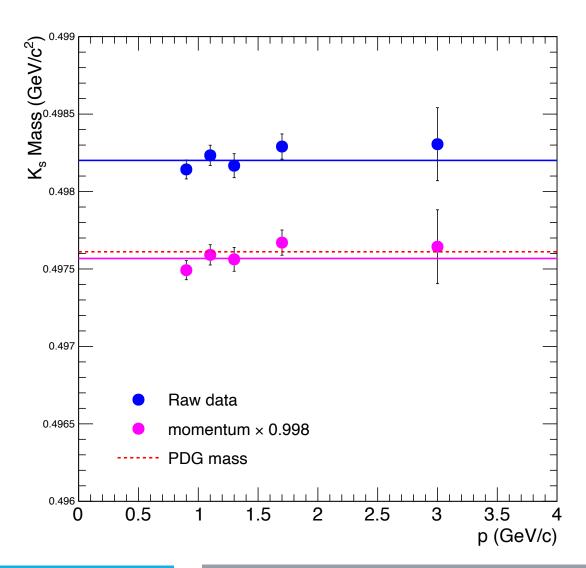


■ Charged particle PID is based on the dE/dx from the TPC. ³He and ⁴He are also selected according to the mass square from the TOF.

Corrections

Momentum calibration due to magnetic field distortion

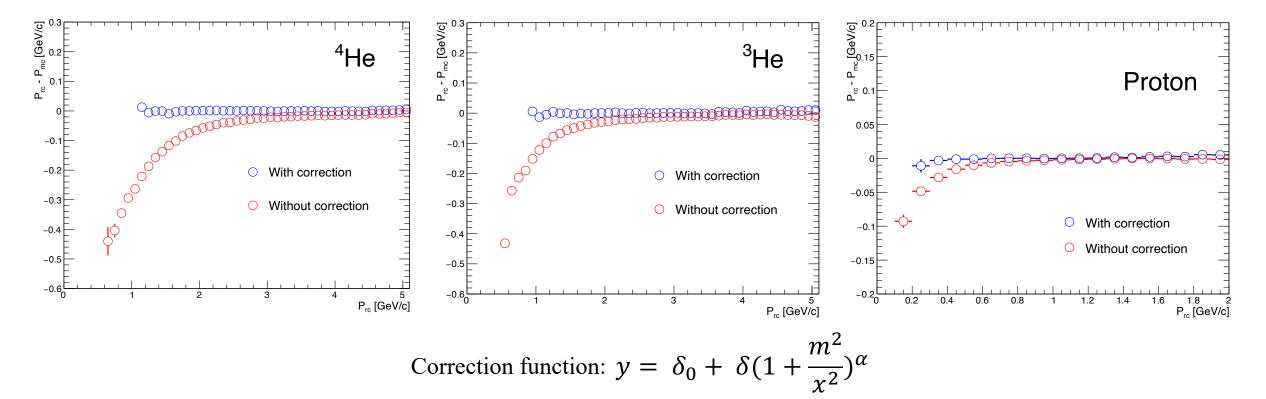
- The track momentum is decide by its curvature in the STAR magnet system.
- Due to the accuracy limitation on the measurement of STAR magnetic field, the reconstructed momentum of track may deviates from the real value.
- We calibrate the track momentum by measuring the mass of $K_s \to \pi^+ + \pi^-$. A 0.2% correction is needed to match the PDG value.
- Consider the uncertainty of the measurement, 0.17% ~
 0.23% correction range are tested to evaluate the systematic uncertainty.



Corrections

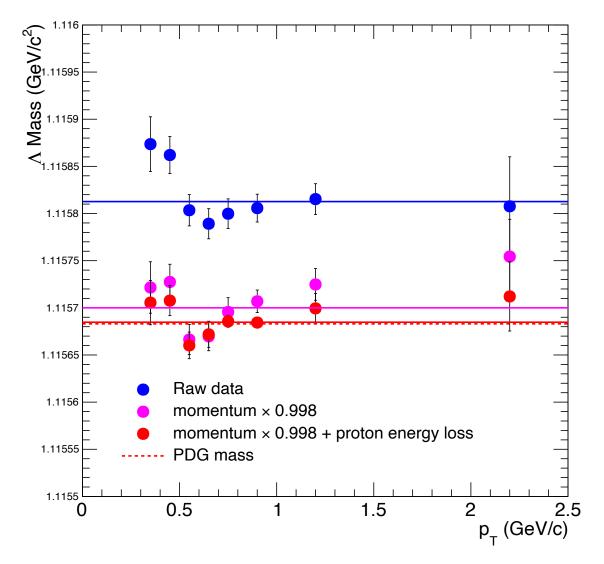
Energy loss corrections in detector system

- Simulate the tracks in virtual STAR detector constructed by GEANT.
- Compare the momentum difference between MC input and detector output.



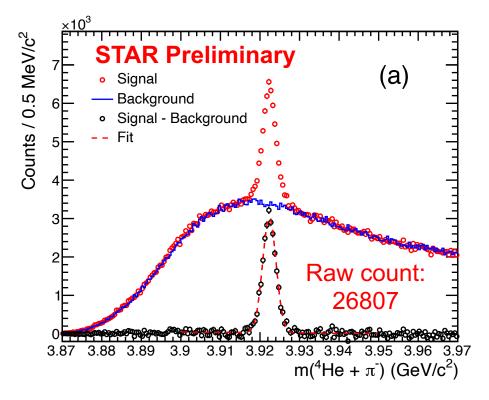
Corrections

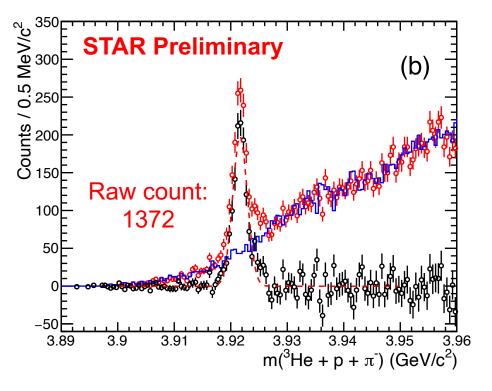
- Test the momentum corrections with $\Lambda \rightarrow p + \pi^-$ mass.
- Λ mass with corrections is consistent with PDG value within ~10keV.
- The deviation of the measured Λ mass from PDG value is propagated to the measured mass of hypernuclei.



Invariant mass measurements

The invariant mass distributions of ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$ with corrections.





- Background: rotate ⁴He or ³He track by random degrees
- Fit function: $f(x) = \frac{A}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + p_0 x + p_1$
- $m(_{\Lambda}^{4}H) = 3922.36 \pm 0.02(stat.) \pm 0.05(syst.) \text{ MeV/c}^{2}$
- $m(_{\Lambda}^{4}\text{He}) = 3921.68 \pm 0.05 \text{(stat.)} \pm 0.04 \text{(syst.)} \text{ MeV/c}^{2}$

Systematic uncertainties

Systematic uncertainties for Λ binding energies.

Error source	⁴ H Systematic error (MeV)	$^4_\Lambda ext{He Systematic error (MeV)}$
Momentum scaling factor	0.03	0.03
Energy loss correction	0.02	0.01
Fit method	0.02	0.01
Topological cuts	0.02	0.03
Bin widths	0.01	0.01
Total	0.05	0.04

As tested in the MC simulation and data, the systematic uncertainty from the momentum scaling factor can be mostly canceled when we calculate the binding energy difference between $^4_{\Lambda}$ H and $^4_{\Lambda}$ He.

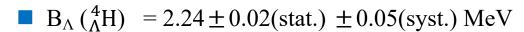
Λ binding energy

Calculate the Λ binding energy according to the masses of hypernuclei and their constituents:

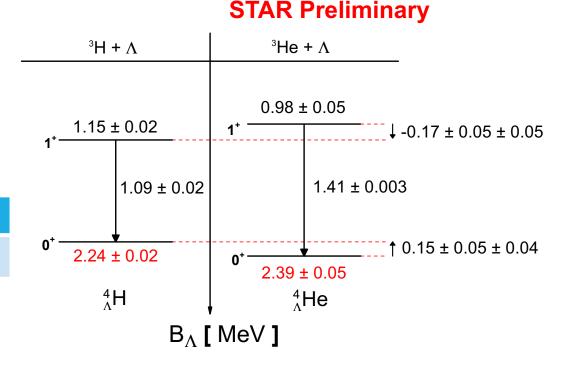
$$B_{\Lambda} = (M_{\Lambda} + M_{core} - M_{hypernucleus})c^{2}$$

$$M_{core} = M(Triton) \text{ or } M(^{3}He)$$

	Λ	Triton	³ He
Mass (MeV/c ²)	1115.68	2808.92	2808.39



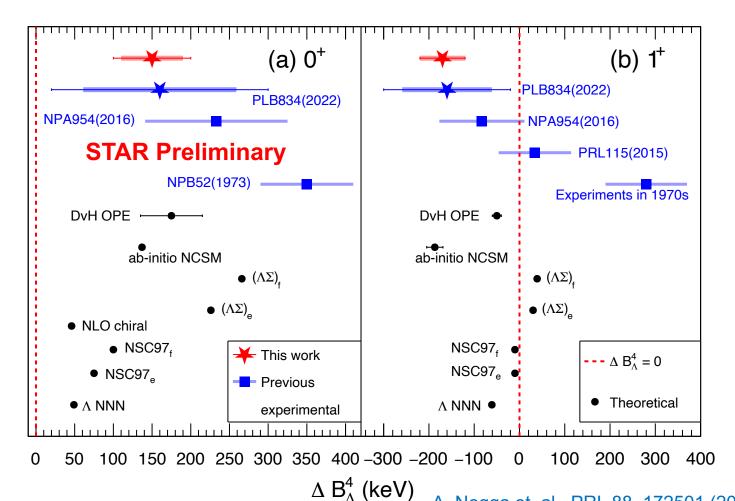
■
$$B_{\Lambda}$$
 (⁴He) = 2.39 ± 0.05(stat.) ± 0.04(syst.) MeV



In energy level schemes of ${}^4_{\Lambda}{\rm H}$ and ${}^4_{\Lambda}{\rm He}$ in terms of Λ binding energies, the ground states binding energies are from this analysis. The values for excited states are obtained from the γ -ray transition energies.

M. Bedjidian et al., PLB 62, 467-470, J-PARC E13 Collaboration, PRL 115, 222501 (2015)

Charge symmetry breaking



- $\Delta B_{\Lambda}(0^{+}) = 150 \pm 50 \text{(stat.)} \pm 40 \text{(syst.)} \text{ keV}$
- $\Delta B_{\Lambda}(1^{+}) = -170 \pm 50 \text{(stat.)} \pm 50 \text{(syst.)} \text{ keV}$
- We confirm that charge symmetry breaking effects in A = 4 hypernuclei ground states and excited states are comparable.
- The ab-initio NCSM calculation with CSB Λ - Σ^0 mixing can describe our results. However, the latest calculation with DvH OPE in excited states deviates from our measurement.

A. Gal, PLB 744 (2015) 352-357

A. Nogga et. al., PRL 88, 172501 (2002) D. Gazda and A. Gal, PRL 116, 122501 (2016)

J. Haidenbauer et. al., LNP 724, 113-140 (2002) D. Gazda and A. Gal, NPA 954 (2016) 161-175

Charge symmetry breaking

■ How symmetry breaking affects a two-level system in basic quantum mechanics:

Hamiltonian :
$$H = H_0 + H'$$

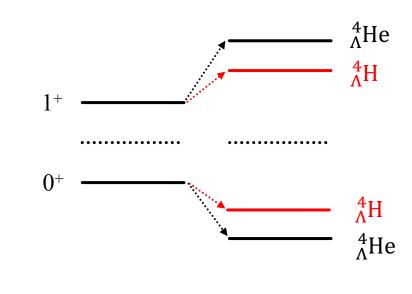
$$H = \begin{pmatrix} H_{00} & H'_{01} \\ H'_{10} & H_{11} \end{pmatrix}$$

If
$$|\psi\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle$$

$$\begin{pmatrix} E - E_2 & -H'_{01} \\ -H'_{10} & E - E_1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0$$

Solve the eigenvalue :

$$\begin{vmatrix} E - E_2 & -H'_{01} \\ -H'_{10} & E - E_1 \end{vmatrix} = 0$$



$$E_{\pm} = E_c \pm \sqrt{d^2 + |H'_{01}|^2}$$
 $E_c = \frac{1}{2}(E_0 + E_1)$ $d = \frac{1}{2}(E_0 - E_1)$

■ Energy shift in two levels should have opposite signs and similar magnitudes. Our results favor the basic QM picture.

Summary

Invariant masses and Λ binding energies of ${}^4_{\Lambda}$ H and ${}^4_{\Lambda}$ He have been measured in $\sqrt{s_{NN}} = 3$ GeV Au+Au collisions with higher precision than before:

$$\begin{split} m(^4_{\Lambda} H) &= 3922.36 \pm 0.02 (stat.) \pm 0.05 (syst.) \text{ MeV/c}^2, B_{\Lambda} (^4_{\Lambda} H) = 2.24 \pm 0.02 (stat.) \pm 0.05 (syst.) \text{ MeV} \\ m(^4_{\Lambda} He) &= 3921.68 \pm 0.05 (stat.) \pm 0.04 (syst.) \text{ MeV/c}^2, B_{\Lambda} (^4_{\Lambda} He) = 2.39 \pm 0.05 (stat.) \pm 0.04 (syst.) \text{ MeV} \end{split}$$

To study the charge symmetry breaking in A = 4 hypernuclei, the Λ binding energy differences between $^4_{\Lambda}$ H and $^4_{\Lambda}$ He in ground states and excited states have been measured/extracted:

$$\Delta B_{\Lambda}(0^{+}) = 0.15 \pm 0.05(stat.) \pm 0.04(syst.) \text{ MeV}$$

 $\Delta B_{\Lambda}(1^{+}) = -0.17 \pm 0.05(stat.) \pm 0.05(syst.) \text{ MeV}$

Our results confirm that the charge symmetry breaking effect in excited states is negative, and the magnitude is comparable to the ground states, which favors the basic quantum mechanics picture.