

Hydrodynamic effects on spin polarization in AA and pA collisions

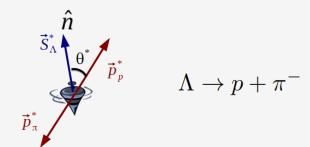
Cong Yi (易聪)

华中师范大学(CCNU)

The 16th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT2025)
Oct 24 – 28, 2025, Guilin

Based on: CY, et.al. in preparation Phys. Rev. C 111 (2025) 4, 044901

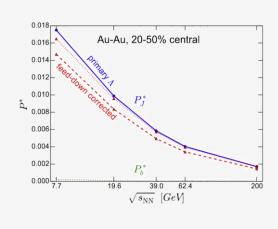
Outline

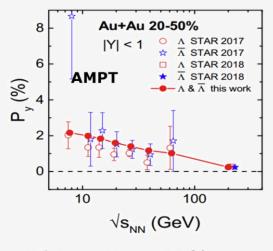

- >Introduction
- ➤ Global polarization at a few GeV Au+Au collision
- >Local Spin polarization at p+Pb collision
- **≻**Summary and Outlook

Global Spin Polarization

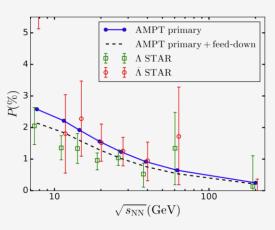
≻Spin-Orbital Coupling

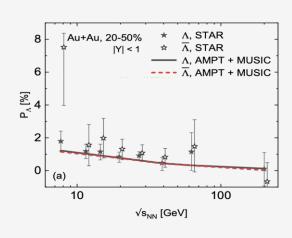
Hyperons Spin Polarization $S = \frac{1}{2}$

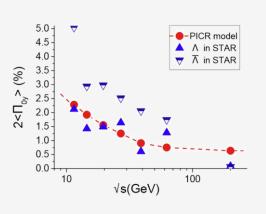

Liang, Wang, PRL. 94, 102301 (2005) Liang, Wang, PLB 629, 20 (2005) Becattini, Chandra, Zanna, and Grossi, Annals Phys. (2013). Becattini and Karpenko, PRL 120, 012302 STAR, Nature 548, 62 (2017).

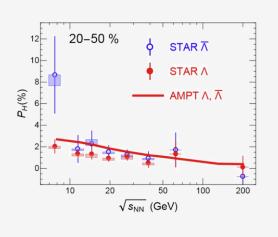

$$\Lambda \to p + \pi^ \omega = k_B T \left(\overline{P}_{\Lambda'} + \overline{P}_{\bar{\Lambda}'} \right) / \hbar \sim 10^{22} s^{-1}$$

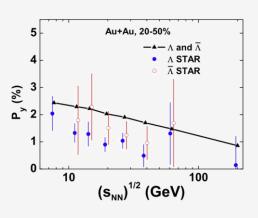
Most vortical fluid!


Phenomenological models for global polarization


Karpenko, Becattini, EPJC(2017)

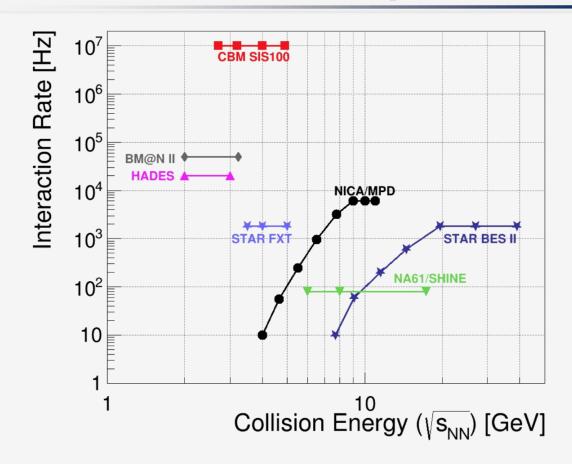

Wei, Deng, Huang, PRC(2019


Li,Pang,Wang,Xia PRC(2017)


Fu, Xu, Huang, Song, PRC (2021)


Xie, Wang, Csernai, PRC(2017)

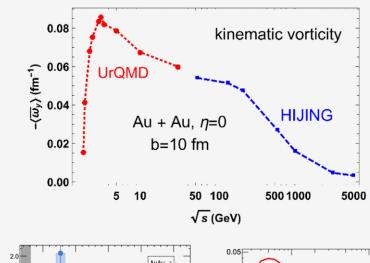
Shi, Li, Liao, PLB(2018)

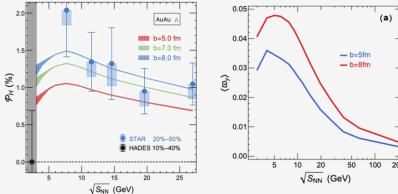


Sun, Ko, PRC(2017)

Wu, CY, Qin, Pu, PRC(2022)

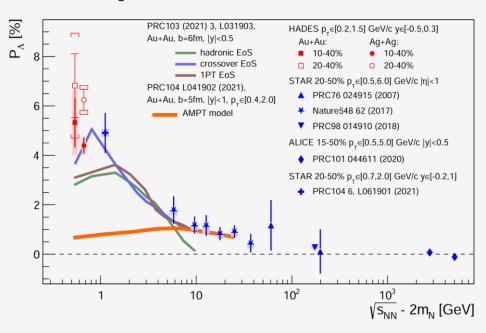
Experimental Facilities


> These new facilities will offer an opportunity to explore the behavior of global polarization at a few GeV.


研究机构	加速器	建成时间	离子列	₹ (GeV/u)	束流强度
IMP	HIAF	2025	238U35+	0.8	$1.0-2.0 \times 10^{11} \text{ ppp}$
			238U76+	2.45	0.5-1.0×10 ¹¹ ppp
			p	9.3	5×10 ¹³
IMP	HIAF-U	2027 – 2032	238U35+	2.95	$2.0 \times 10^{12} \text{ ppp}$
			238U76+	7.3	$1.0 \times 10^{12} \text{ ppp}$
			238U92+	9.1	1.0×10 ¹² ppp
			p	25.0	4.0×10^{14}
GSI	FAIR SIS100	2028	238U28+	2.7	5×10 ¹¹ ppp

Global Polarization at a few GeV

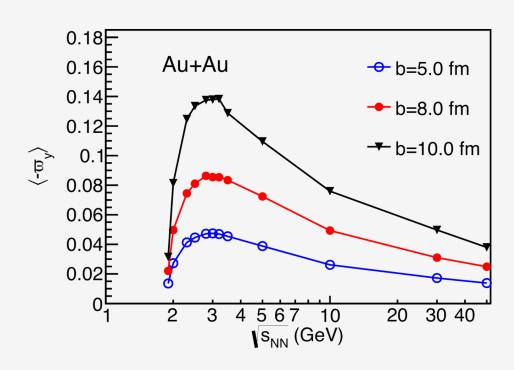
> Theoretical prediction



Deng, Huang PRC 2016, PRC 2020

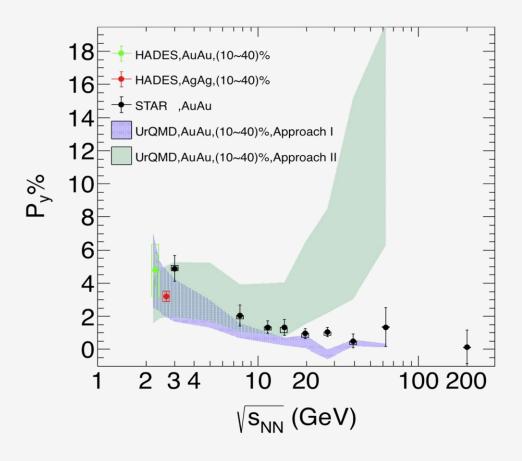
Guo, Liao, et. al, PRC 2021

> Experimental results



HADES, Phys.Lett.B (2022) 137506

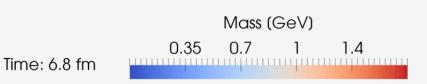
- > Will the polarization of Λ keep rising with decreasing energy?
- > If not, how large will the turning energy be.


Global Polarization with URQMD

> Thermal vorticity

Deng, Huang, Ma, Zhang PRC 101 (2020) 6, 064908 Deng, Huang, Ma, Zhang PLB 835 (2022) 137560

> Polarization


Outline

- >Introduction
- >Global polarization at a few GeV Au+Au collision
- >Local Spin polarization at p+Pb collision
- **≻**Summary and Outlook

SMASH Model

SMASH, Phys. Rev. C 94 (2016) 5, 054905

> SMASH

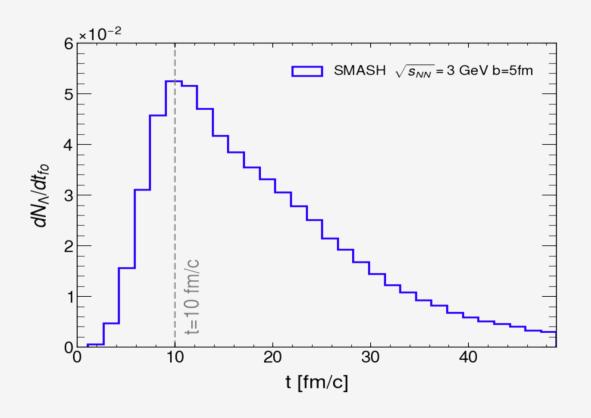
It solves the relativistic Boltzmann equation effectively.

$$p^{\mu}\partial_{\mu}f + mF^{\mu}\partial_{p_{\mu}}(f) = C[f]$$

The collision kernel includes elastic collisions, string fragmentation, resonance formation and decays for all mesons and baryons up to mass 2.35 GeV.

Polarization induced by different sources

>Spin polarization at local equilibrium


$$\mathcal{S}^{\mu}(\mathbf{p}) = \mathcal{S}^{\mu}_{\mathrm{thermal}} + \mathcal{S}^{\mu}_{\mathrm{shear}} + \mathcal{S}^{\mu}_{\mathrm{accT}} + \mathcal{S}^{\mu}_{\mathrm{chemical}} + \mathcal{S}^{\mu}_{\mathrm{EB}}$$

$$\mathcal{S}_{\text{thermal}}^{\mu}(\mathbf{p}) = \frac{\hbar}{8m_{\Lambda}N} \int d\Sigma^{\sigma} p_{\sigma} f_{V}^{(0)}(1-f_{V}^{(0)}) \underbrace{e^{\mu\nu\alpha\beta}p_{\nu}\partial_{\alpha}\frac{u_{\beta}}{T}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\nu}\partial_{\alpha}\frac{u_{\beta}}{T}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\nu}u_{\alpha}(Du_{\beta}-\frac{1}{T}\partial_{\beta}T)}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\nu}u_{\alpha}(Du_{\beta}-\frac{1}{T}\partial_{\beta}T)}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}\partial_{\nu}\frac{\mu}{T}}_{\mathbf{p}} \underbrace{e^{\mu\nu\alpha\beta}p_{\alpha}u_{\beta}\partial_{\nu}\frac{\mu}{T}$$

Liu, Yin, PRD 104, 054043 (2021); Becattini, Buzzegoli, Palermo, PLB 820, 136519 (2021); Liu, Yin, JHEP 07,188 (2021); Hidaka, Pu, Yang, PRD 97, 016004 (2018); CY, Pu, Yang, PRC 04, 064901(2021)

Thermalization Assumption

> Freeze-out time distribution

- Last interaction time mostly around t = 10fm/c
- We assume most of the lambda hyperons reach the local equilibrium at freeze-out
- ➤ Then we can calculate the spin polarization at lower energy by the modified Cooper-Frye formula

Thermal Vorticity

At such low collision energies, hydrodynamic models may no longer be applicable.

> Flow velocity

$$T^{\mu\nu}(\tau, x, y, \eta_s) = \frac{1}{\Delta V} \left\langle \sum_i \frac{p_i^{\mu} p_i^{\nu}}{p_i^0} \right\rangle,$$
$$T^{\mu}_{\ \nu} u^{\nu} = \varepsilon u^{\mu}$$

Baryon density

$$J_B^{\mu} = \frac{1}{N_e \Delta V} \sum_i Q_i \frac{p_i^{\mu}}{E_i}$$

$$N_B = J_B^{\mu} u_{\mu}$$

> Thermal Vorticity

$$\boldsymbol{\varpi}_{\mathrm{T}} = (\boldsymbol{\varpi}_{tx}, \boldsymbol{\varpi}_{ty}, \boldsymbol{\varpi}_{tz}) = \frac{1}{2} (\nabla \boldsymbol{\beta}_{t} + \partial_{t} \boldsymbol{\beta}),$$
$$\boldsymbol{\varpi}_{\mathrm{S}} = (\boldsymbol{\varpi}_{yz}, \boldsymbol{\varpi}_{zx}, \boldsymbol{\varpi}_{xy}) = \frac{1}{2} \nabla \times \boldsymbol{\beta}.$$

> Global Polarization

$$\mathbf{P}_{\mathrm{H}} = \frac{S+1}{3} \left[\frac{E}{m} \boldsymbol{\varpi}_{\mathrm{S}}(x) + \frac{\mathbf{p}}{m} \times \boldsymbol{\varpi}_{\mathrm{T}}(x) - \frac{\mathbf{p} \cdot \boldsymbol{\varpi}_{\mathrm{S}}(x)}{m(E+m)} \mathbf{p} \right].$$

Equation of State

> Hadron Resonance Gas

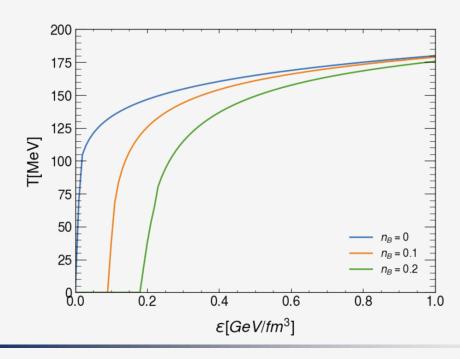
Grand canonical partition function

$$\ln Z_i^{id.gas} = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln \left[1 \pm \exp \left(- (E_i - \mu_i) / T \right) \right]$$

$$n_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp\left[\left(E_{i} - \mu_{i}\right)/T\right] \pm 1}$$

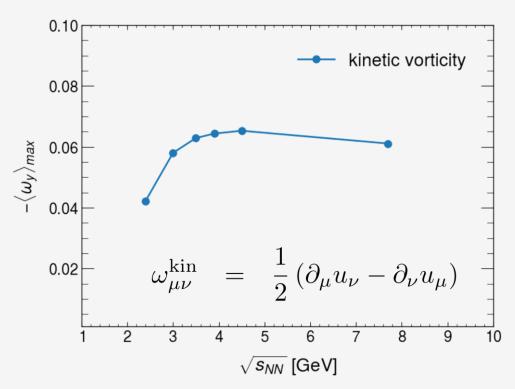
$$\varepsilon_{i} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\exp\left[\left(E_{i} - \mu_{i}\right)/T\right] \pm 1} E_{i}$$

$$\mu_{i} = b_{i}\mu_{B} + s_{i}\mu_{S} + q_{i}\mu_{Q}$$

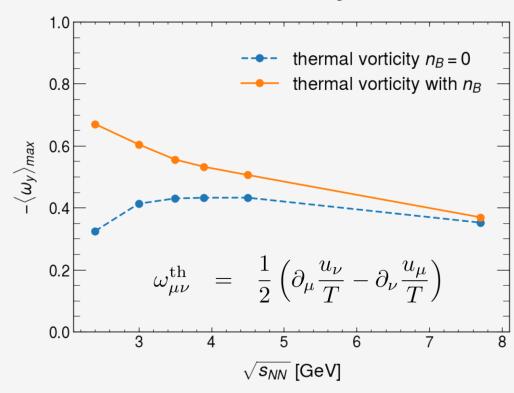

As the net baryon density increases, the extracted temperature at a given energy density will decrease.

$$n_{B} = \sum_{i} n_{i}b_{i}$$

$$n_{Q} = \sum_{i} n_{i}q_{i}$$

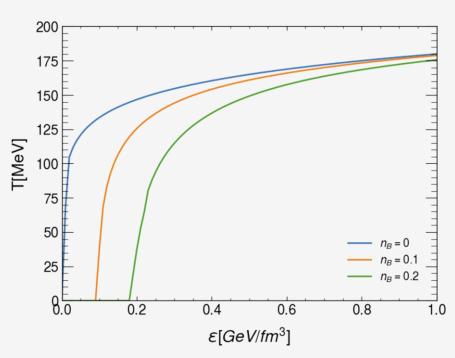

$$n_{S} = \sum_{i} n_{i}s_{i}$$

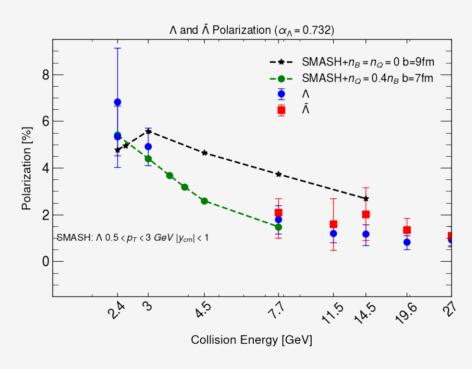
$$n_{Q} = 0.4n_{B}, n_{S} = 0$$



Vorticity Vs collision energy

> Kinetic vorticity

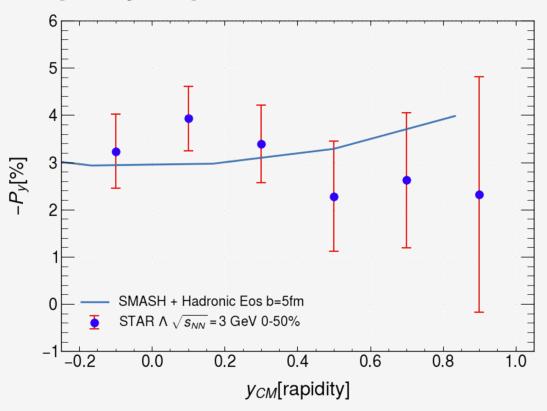

> Thermal vorticity


- > Kinetic vorticity peaks and then decreases as collision energy falls to a few GeV
- ➤ Including net baryon density leads to stronger thermal vorticity without a decrease at the energy is larger than 2.4 GeV, unlike results that ignore baryon density

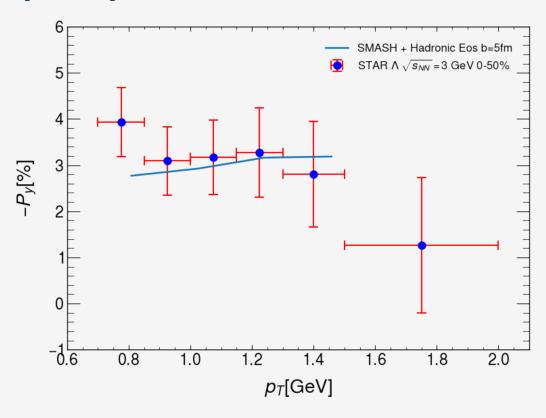
Global Polarization at a few GeV

> Equation of State

>-Py Vs collision energy



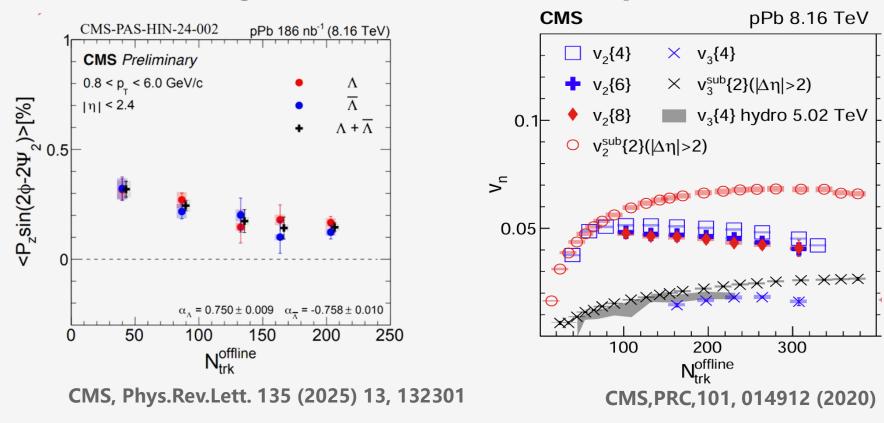
CY, et.al. (in preparation)


> The behavior of spin polarization at low energies is sensitive to the baryonic density

Global Polarization at 3 GeV

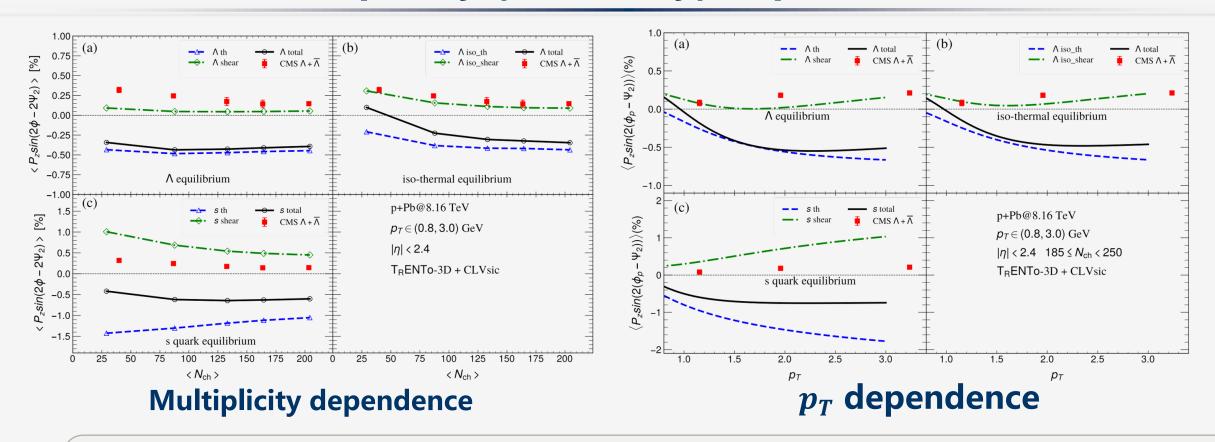
> Rapidity dependence

>pT dependence

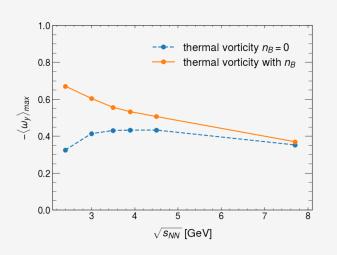

> Our results also have a good description of Global spin polarization at 3 GeV

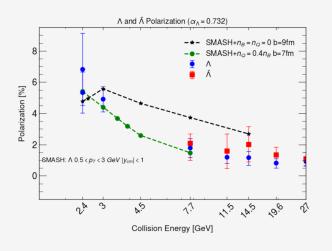
Outline

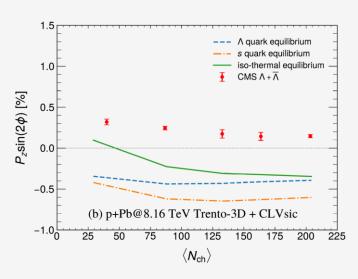
- >Introduction
- ➤ Global polarization at a few GeV Au+Au collision
- **▶** Local Spin polarization at p+Pb collision
- **≻**Summary and Outlook


CMS Measurements

> Polarization along the beam direction in p+Pb collisions

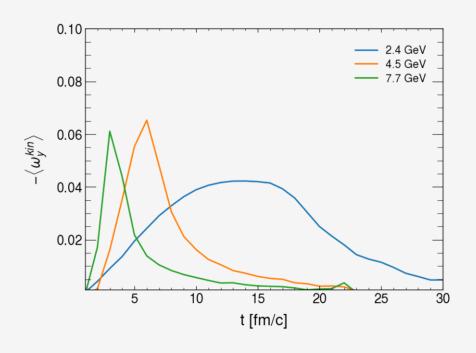

- > The magnitude of polarization is the same order of magnitude as that in AA collisions
- > Its dependence on multiplicity is inconsistent with that of v2


Multiplicity (centrality) dependence

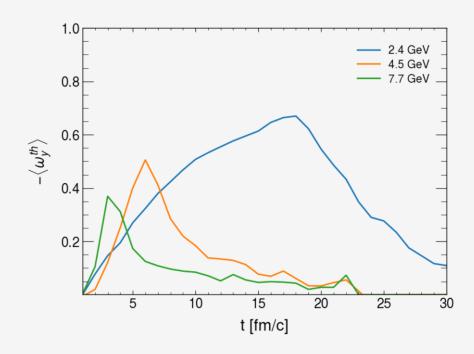


- > Shear induced polarization always gives a positive contribution
- Polarization induced by the thermal vorticity is negative
- > The results in the three scenarios are inconsistent with the data from the LHC-CMS experiments.

Summary and Outlook


- > The kinematic vorticity will peak at low energies.
- > When finite net baryon density is included, both the thermal vorticity and the global spin polarization increase as the collision energy decreases down to 2.4 GeV.
- > The behavior of global polarization at low energies is sensitive to the temperature extracted from the equation of state.
- The results from hydrodynamics are inconsistent with the data from CMS.

Thanks for your attention!


Back Up

Evolution of Vorticity

Kinetic Vorticity

Thermal Vorticity

- Higher collision energies lead to faster vorticity deposition and decay.
- Kinetic vorticity: Peak value shows a non-monotonic dependence on decreasing collision energy.
- > Thermal vorticity: For energies > 2.4 GeV, the peak value increases as collision energy decreases.

Spin Polarization Vector

We follow the modified Cooper-Frye formula to compute the polarization pseudo-vector including the contribution from thermal vorticity and thermal shear tensor and neglect the spin hall effect:

$$\mathcal{S}^{\mu}(\mathbf{p}) = \mathcal{S}^{\mu}_{\text{thermal}}(\mathbf{p}) + \mathcal{S}^{\mu}_{\text{th-shear}}(\mathbf{p}),$$

$$\mathcal{S}^{\mu}_{\text{thermal}}(\mathbf{p}) = \hbar \int d\Sigma \cdot \mathcal{N}_{p} \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \varpi_{\alpha\beta},$$

$$\mathcal{S}^{\mu}_{\text{th-shear}}(\mathbf{p}) = \hbar \int d\Sigma \cdot \mathcal{N}_{p} \frac{\epsilon^{\mu\nu\alpha\beta} p_{\nu} n_{\beta}}{(n \cdot p)} p^{\sigma} \xi_{\sigma\alpha},$$

thermal vorticity:
$$\varpi_{\alpha\beta} = \frac{1}{2} \left[\partial_{\alpha} \left(\frac{u_{\beta}}{T} \right) - \partial_{\beta} \left(\frac{u_{\alpha}}{T} \right) \right],$$
 thermal shear tensor: $\xi_{\alpha\beta} = \frac{1}{2} \left[\partial_{\alpha} \left(\frac{u_{\beta}}{T} \right) + \partial_{\beta} \left(\frac{u_{\alpha}}{T} \right) \right]$