Contribution ID: 26 Type: Oral

重离子碰撞中椭圆流分裂行为的研究:TRENTO-3D + CLVisc 模拟

Sunday, 26 October 2025 08:45 (20 minutes)

Using the TRENTo-3D initial condition model coupled with (3+1)-dimensional CLVisc hydrodynamic simulations, we systematically investigate the left-right splitting of elliptic flow (Δv_2) for soft particles in relativistic heavy-ion collisions. Our study reveals that the final distribution characteristics of Δv_2 are primarily depend on the odd flow harmonics and v_2 itself.

We find that the parton transverse momentum scale $k_{\rm T}$ not only determines the geometric tilt of the QGP fireball but also significantly affects the rapidity dependence of both v_1 and Δv_2 , providing new insights into the splitting mechanism of Δv_2 .

Furthermore, our results demonstrate that $\Delta v_2(p_{\rm T})$ exhibits significant sensitivity to influences such as the sub-nucleonic degrees of freedom (or 'hotspots'), transverse momentum scale, and fragmentation region profile. By analyzing the Δv_2 and $\Delta v_2/v_2$ ratio, our findings provide new constraints on the uncertainties of the QGP initial state and provide additional constraints for refining model parameters.

Primary author: Prof. JIANG, Ze-Fang (Hubei Engineering University)

Presenter: Prof. JIANG, Ze-Fang (Hubei Engineering University)

Session Classification: Parallel III

Track Classification: 集体流和关联 (collective flow and correlation)