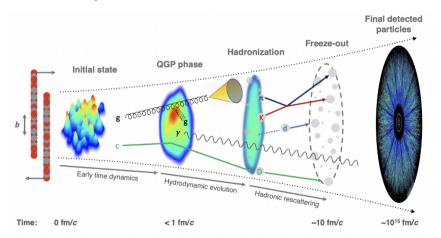




## Flow measurements at LHCb experiment

Jianqiao Wang on behalf of the LHCb collaboration

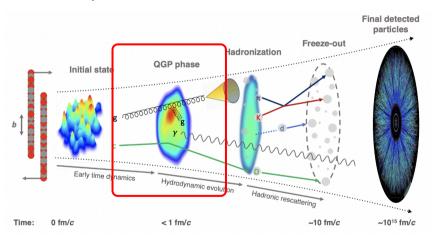
October 26, 2025




- Physics background
- 2 Flow in 5.02 TeV PbPb
- 3 Flow in small systems
- 4 Flow in fixed-target PbNe and PbAr
- **1** Light-ion data taking
- 6 Summary and Prospects

2/16

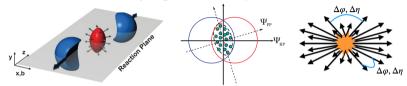
## Standard Model for heavy-ion collisions


• Time evolution of heavy-ion collisions



3/16

## Standard Model for heavy-ion collisions


• Time evolution of heavy-ion collisions



• Fluid-like QGP created in PbPb collisions

#### Flow

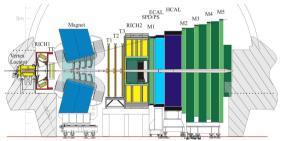
- Hydrodynamic and thermal expansion of medium can lead to particle collectivity
- Flow considered as one of the key signatures of QGP formation



• Characterized by Fourier coefficients  $v_n$ :

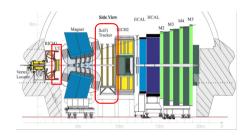
$$E\frac{\mathrm{d}^3 N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \left( 1 + 2 \sum_{1}^{\infty} v_n \cos[n(\phi - \Psi_{\mathrm{R}})] \right)$$

- $\triangleright$   $v_1$ : direct flow
- $\triangleright$   $v_2$ : elliptic flow
- $\triangleright$   $v_3$ : triangular flow





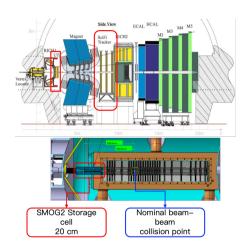

4/16


#### LHCb detector in Run2

- A single-arm general-purpose forward spectrometer, covering the pseudo-rapidity range of  $2 < \eta < 5$ .
- Excellent tracking and particle identification capabilities
- Complementary to other LHC experiments: forward rapidity, unique fixed-target mode, high-purity heavy flavor signals for flow measurements



5/16

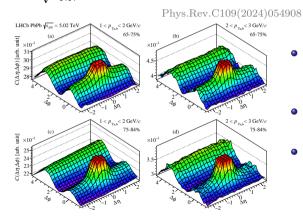

#### LHCb detector in Run3



- Upgraded tracking and trigger system to operate at higher luminosities
- More central data accessible for heavy-ion collisions
  - ▶ Up to 30% for PbPb, full-centrality for light-ion

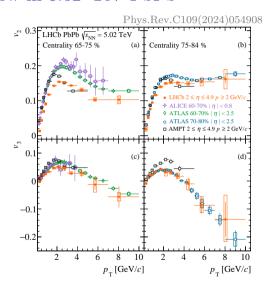
6/16

#### LHCb detector in Run3




- Upgraded tracking and trigger system to operate at higher luminosities
- More central data accessible for heavy-ion collisions
  - ▶ Up to 30% for PbPb, full-centrality for light-ion
- New SMOG2 system for fixed-target program
  - Running simultaneously with collider mode
  - ▶ Unique energy range  $\sqrt{s_{\rm NN}} \sim 30\text{--}110\,\text{GeV}$  and very backward rapdity
  - ▶ Wider choice of gas (H<sub>2</sub>, He, Ne, Ar)

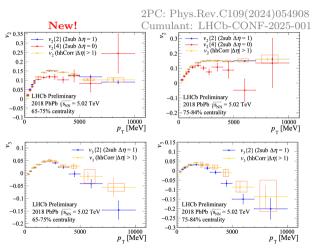
6/16


#### Flow at forward rapidity

• Flow measurement with two-particle correlation with Run2 PbPb data at  $\sqrt{s_{\mathrm{NN}}} = 5.02 \,\mathrm{TeV}$ 



- Near-side ridge observed in (peripheral) PbPb at forward rapidity, similar to midrapidity results
- Lower ridge for more peripheral collisions
- Non-flow subtracted by excluding jet region


#### Flow in 5.02 TeV PbPb

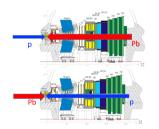


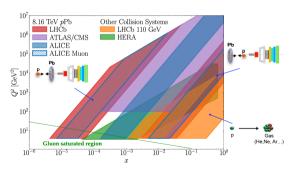
- Smaller  $v_2(p_T)$  and  $v_3(p_T)$  compared to ALICE and ATLAS results at midrapidity, possibly due to the dominant freeze-out phase at forward rapidity
- AMPT overestimates  $v_n$  at forward rapidity

8/16

#### Flow in 5.02 TeV PbPb




- Smaller  $v_2(p_T)$  and  $v_3(p_T)$  compared to ALICE and ATLAS results at midrapidity, possibly due to the dominant freeze-out phase at forward rapidity
- AMPT overestimates  $v_n$  at forward rapidity
- Validation with cumulant method
  - Good agreement between two methods
  - Better non-flow subtraction with cumulant method


8/16

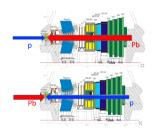
## Flow in pPb

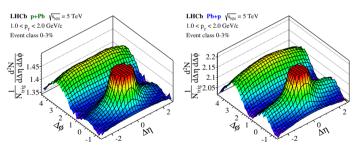
- Explanation for the QGP signature in high-multiplicity small systems
  - ▶ QGP droplet formation? Transport?
  - ► Glasma?

• Unique coverage to investigate possible gluon saturation






9/16

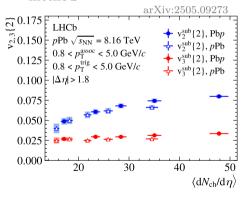

## Flow in pPb

- Explanation for the QGP signature in high-multiplicity small systems
  - ▶ QGP droplet formation? Transport?
  - ► Glasma?

• Long-range correlations observed in 5 TeV pPb

Phys.Lett.B762(2016)473-483

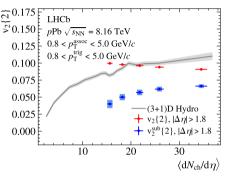


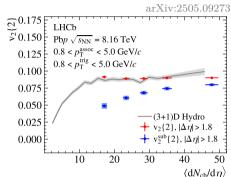



• No flow extraction unfortunately

9/16

## Flow in $8.16 \,\mathrm{TeV}\ p\mathrm{Pb}$


- $\bullet$  More detailed analysis and higher statistics with Run2 pPb
- Improved non-flow suppression compared to PbPb: large  $\eta$  gap, jet-yield subtracted method

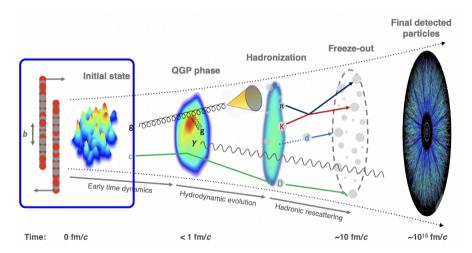



- Rising  $v_2$  and flat  $v_3$  trends as a function of charged particle density
- Consistent result for both rapidities. No Bjorken-x dependence observed
- Final state effects dominant?

10 / 16

## Flow in $8.16 \,\mathrm{TeV}\ p\mathrm{Pb}$



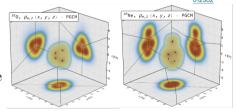



- $\bullet$  Compared with (3+1)D hydrodynamic model, which calibrated with pp results at different energies
- Clearly overestimates  $v_2$ 
  - ► Issue of fluid parametrization or hydrodynamics itself in small systems?

Jianqiao Wang Flow at LHCb October 26, 2025 11/16

#### Initial geometry

• Other knowledge from flow measurements

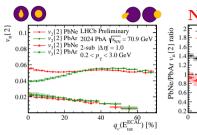


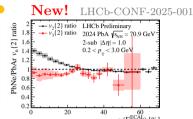

## Nuclear shape

• Anisotropy initial shape can be converted to collevtive motion in momentum space



- Different nuclear structure predictions
  - ► Ne: strongly deformed bowling pin shape
  - ▶ O, Ar: nearly spherical
- Large  $v_2$  difference expected between the most central AA collisions
- Even more pronounced differences in fixed-target systems!

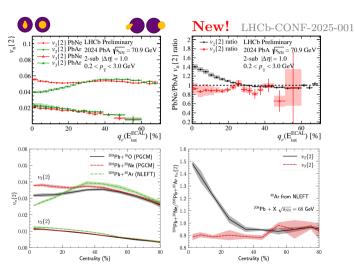




Phys. Rev. Lett. 135,



## Flow in fixed-target PbNe and PbAr

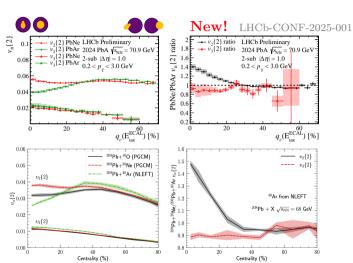
- Flatter  $v_2$  for PbNe compared with PbAr and similar decreasing  $v_3$
- Significant enhanced ( $\sim 40\%$ )  $v_2$  ratios between PbNe and PbAr as collision goes central






14 / 16

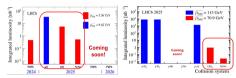
## Flow in fixed-target PbNe and PbAr


- Flatter  $v_2$  for PbNe compared with PbAr and similar decreasing  $v_3$
- Significant enhanced ( $\sim 40\%$ )  $v_2$  ratios between PbNe and PbAr as collision goes central
- Trend well described by 3+1D hydro prediction with ab-initio nuclear-structure (PGCM and NLEFT), suggesting the elongated Neon shape and the validity of hydrodynamic description in these systems

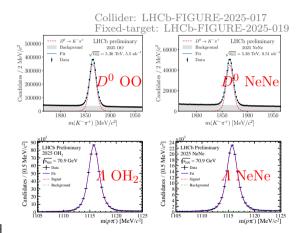


14/16

## Flow in fixed-target PbNe and PbAr


- Flatter  $v_2$  for PbNe compared with PbAr and similar decreasing  $v_3$
- Significant enhanced ( $\sim 40\%$ )  $v_2$  ratios between PbNe and PbAr as collision goes central
- Trend well described by 3+1D hydro prediction with ab-initio nuclear-structure (PGCM and NLEFT), suggesting the elongated Neon shape and the validity of hydrodynamic description in these systems
- Improved centrality calibration and updated models will be implemented for final results




14/16

#### Light-ion data taking

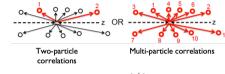
• Both collider and fixed-target data from light-ion runs



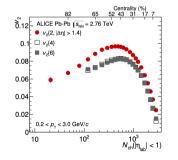
- Excellent data collected in OO and NeNe run
- Search QGP signature in small systems and study the *transition* from large system
- Fixed-target OH<sub>2</sub> and NeNe data simultaneously with collider mode
- Unique opportunity for cosmic ray and nuclear imaging



#### Summary and Prospects


- Growing contributions on flow results from LHCb experiment
  - $\triangleright$  Significant charged particle  $v_2$  in pPb and PbPb collisions at forward rapidity, smaller than that observed at midrapidity
  - $\blacktriangleright$  Hydrodynamic model overestimates  $v_2$  in  $p{\rm Pb}$  collisions, more studies needed to understand the descrepancy
  - ► First preliminary result with upgraded SMOG2 system, suggesting the <sup>20</sup>Ne nucleus deformation
- Outlook
  - Further measurements (e.g.  $v_n p_T$  correlation) for studying cluster structures of light nuclei
  - ▶ Excellent data from light-ion run both for colliding and fixed-target modes

16 / 16

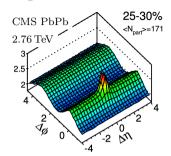

# Thanks for your attention!

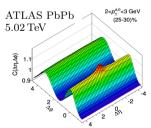
#### Cumulant method

• Cumulant method: nth order cumulant  $c_n\{m\}$  can be derived from  $Q_n$  vectors



$$v_2{2} = (c_2{2})^{1/2}, \quad v_2{4} = (-c_2{4})^{1/4}$$





- Non-flow effects with suppressed with more particles correlated
- Results directly come from the event-by-event measurement

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

2/3

#### Two-particle correlation





- Two-particle correlation:  $(\Delta \eta, \Delta \phi)$  correlation function
- Obtained by comparing distributions same-event and mixed-event pairs

$$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N^{\text{pair}}}{\mathrm{d}\Delta \eta \ \mathrm{d}\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

- Long-range correlation ridge symbolises the positive  $v_2$
- Significant ridge and jet (non-flow) structures
- What about forward rapidity?